These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
612 related articles for article (PubMed ID: 9138555)
1. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Gilson MK; Given JA; Bush BL; McCammon JA Biophys J; 1997 Mar; 72(3):1047-69. PubMed ID: 9138555 [TBL] [Abstract][Full Text] [Related]
2. Entropic cost of protein-ligand binding and its dependence on the entropy in solution. Irudayam SJ; Henchman RH J Phys Chem B; 2009 Apr; 113(17):5871-84. PubMed ID: 19351118 [TBL] [Abstract][Full Text] [Related]
3. The "cratic correction" and related fallacies. Holtzer A Biopolymers; 1995 Jun; 35(6):595-602. PubMed ID: 7766825 [TBL] [Abstract][Full Text] [Related]
5. Structural parameterization of the binding enthalpy of small ligands. Luque I; Freire E Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999 [TBL] [Abstract][Full Text] [Related]
6. Calculations of solute and solvent entropies from molecular dynamics simulations. Carlsson J; Aqvist J Phys Chem Chem Phys; 2006 Dec; 8(46):5385-95. PubMed ID: 17119645 [TBL] [Abstract][Full Text] [Related]
7. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. Hamelberg D; McCammon JA J Am Chem Soc; 2004 Jun; 126(24):7683-9. PubMed ID: 15198616 [TBL] [Abstract][Full Text] [Related]
8. Parallelized-over-parts computation of absolute binding free energy with docking and molecular dynamics. Jayachandran G; Shirts MR; Park S; Pande VS J Chem Phys; 2006 Aug; 125(8):084901. PubMed ID: 16965051 [TBL] [Abstract][Full Text] [Related]
10. Fragment-based computation of binding free energies by systematic sampling. Clark M; Meshkat S; Talbot GT; Carnevali P; Wiseman JS J Chem Inf Model; 2009 Aug; 49(8):1901-13. PubMed ID: 19610599 [TBL] [Abstract][Full Text] [Related]
11. New and fast statistical-thermodynamic method for computation of protein-ligand binding entropy substantially improves docking accuracy. Ruvinsky AM; Kozintsev AV J Comput Chem; 2005 Aug; 26(11):1089-95. PubMed ID: 15929088 [TBL] [Abstract][Full Text] [Related]
12. Crucial importance of translational entropy of water in pressure denaturation of proteins. Harano Y; Kinoshita M J Chem Phys; 2006 Jul; 125(2):24910. PubMed ID: 16848614 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of protein-ligand binding free energy focused on its entropic components. Chiba S; Harano Y; Roth R; Kinoshita M; Sakurai M J Comput Chem; 2012 Feb; 33(5):550-60. PubMed ID: 22162031 [TBL] [Abstract][Full Text] [Related]
14. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY; Chu ZT; Tao H; Warshel A Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821 [TBL] [Abstract][Full Text] [Related]
15. Calculation of absolute protein-ligand binding constants with the molecular dynamics free energy perturbation method. Woo HJ Methods Mol Biol; 2008; 443():109-20. PubMed ID: 18446284 [TBL] [Abstract][Full Text] [Related]
16. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations. Verkhivker GM Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264 [TBL] [Abstract][Full Text] [Related]
17. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model. Vorobjev YN; Almagro JC; Hermans J Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412 [TBL] [Abstract][Full Text] [Related]
18. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337 [TBL] [Abstract][Full Text] [Related]
19. Free-energy analysis of enzyme-inhibitor binding: aspartic proteinase-pepstatin complexes. Kalra P; Das A; Jayaram B Appl Biochem Biotechnol; 2001; 96(1-3):93-108. PubMed ID: 11783905 [TBL] [Abstract][Full Text] [Related]
20. Calculations of pH-dependent binding of proteins to biological membranes. Mihajlovic M; Lazaridis T J Phys Chem B; 2006 Feb; 110(7):3375-84. PubMed ID: 16494352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]