These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9138569)

  • 41. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL
    PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Membrane deformability and the capacity for shape change in the erythrocyte.
    Chasis JA; Schrier SL
    Blood; 1989 Nov; 74(7):2562-8. PubMed ID: 2804378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of cell swelling rate on the permeability and mechanical properties of the erythrocyte membrane.
    Eskelinen S
    Biomed Biochim Acta; 1983; 42(11-12):S97-101. PubMed ID: 6675723
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction of added amphiphilic lipids with the membrane of intact human erythrocytes to induce change in the cell shape.
    Tamura A; Morita K; Fujii T
    J Biochem; 1982 Jan; 91(1):73-8. PubMed ID: 6917846
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Resolution of the paradox of red cell shape changes in low and high pH.
    Gedde MM; Yang E; Huestis WH
    Biochim Biophys Acta; 1999 Mar; 1417(2):246-53. PubMed ID: 10082800
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computation of the erythrocyte cell membrane parameters from electrophoretical and biochemical data: stern-like electrochemical model of the cell membrane.
    Dołowy K; Godlewski Z
    J Theor Biol; 1980 Jun; 84(4):709-23. PubMed ID: 7431949
    [No Abstract]   [Full Text] [Related]  

  • 48. The mechanism of chlorpromazine-induced red blood cell swelling.
    Cornelius AS; Reilly MP; Suzuki M; Asakura T; Horiuchi K
    Gen Pharmacol; 1994 Jan; 25(1):205-10. PubMed ID: 8026707
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The influence of deformation of transformed erythrocytes during flow on the rate of oxygen release.
    Kon K; Maeda N; Shiga T
    J Physiol; 1983 Jun; 339():573-84. PubMed ID: 6887035
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A possible physical mechanism of red blood cell vesiculation obtained by incubation at high pH.
    Iglic A; Hägerstrand H; Kralj-Iglic V; Bobrowska-Hägerstrand M
    J Biomech; 1998 Feb; 31(2):151-6. PubMed ID: 9593208
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of erythrocyte shape and rigidity on the viscosity of blood.
    Whitmore RL
    Biorheology; 1981; 18(3-6):557-62. PubMed ID: 7326393
    [No Abstract]   [Full Text] [Related]  

  • 52. Quasi-elastic light scattering studies of membrane motion in single red blood cells.
    Tishler RB; Carlson FD
    Biophys J; 1987 Jun; 51(6):993-7. PubMed ID: 3607216
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elastic properties of the erythrocyte membrane and the critical cell volume of erythrocytes.
    Mosior M
    Biochim Biophys Acta; 1988 Dec; 946(2):429-30. PubMed ID: 3207757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Raman spectra of single human living erythrocyte with the effect of pH and serum albumin].
    Wu ZJ; Wang C; Lin ZC; Jiao QZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1279-83. PubMed ID: 25095422
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane skeleton and red blood cell vesiculation at low pH.
    Bobrowska-Hägerstrand M; Hägerstrand H; Iglic A
    Biochim Biophys Acta; 1998 Apr; 1371(1):123-8. PubMed ID: 9565664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measurement of inherent particle properties by dynamic light scattering: introducing electrorotational light scattering.
    Prüger B; Eppmann P; Donath E; Gimsa J
    Biophys J; 1997 Mar; 72(3):1414-24. PubMed ID: 9138587
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of chlorpromazine on the potential-induced shape change of human erythrocyte.
    Hartmann J; Glaser R
    Biosci Rep; 1991 Aug; 11(4):213-21. PubMed ID: 1760529
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Topo-optical investigations of the human erythrocyte glycocalyx-age related changes.
    Halbhuber KJ; Gliesing M; Stibenz D; Makovitzky J
    Histochemistry; 1984; 81(2):187-93. PubMed ID: 6490404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-time study of shape and thermal fluctuations in the echinocyte transformation of human erythrocytes using defocusing microscopy.
    Etcheverry S; Gallardo MJ; Solano P; Suwalsky M; Mesquita ON; Saavedra C
    J Biomed Opt; 2012 Oct; 17(10):106013. PubMed ID: 23224012
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Erythrocyte morphological states, phases, transitions and trajectories.
    Rudenko SV
    Biochim Biophys Acta; 2010 Sep; 1798(9):1767-78. PubMed ID: 20538541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.