BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

676 related articles for article (PubMed ID: 9138570)

  • 21. Site-directed mutagenesis of cysteine-148 in the lac permease of Escherichia coli: effect on transport, binding, and sulfhydryl inactivation.
    Viitanen PV; Menick DR; Sarkar HK; Trumble WR; Kaback HR
    Biochemistry; 1985 Dec; 24(26):7628-35. PubMed ID: 3912006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cysteine scanning mutagenesis of the N-terminal 32 amino acid residues in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Persson B; Schwieger J; Cohan P; Kaback HR
    Protein Sci; 1994 Feb; 3(2):240-7. PubMed ID: 8003960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From membrane to molecule to the third amino acid from the left with a membrane transport protein.
    Kaback HR; Wu J
    Q Rev Biophys; 1997 Nov; 30(4):333-64. PubMed ID: 9634651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the conformation of the lactose permease of Escherichia coli by in situ site-directed sulfhydryl modification.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Apr; 35(13):3950-6. PubMed ID: 8672426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Kaback HR
    Protein Sci; 1993 Jun; 2(6):1024-33. PubMed ID: 8318887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements.
    Borrell JH; Montero MT; Morros A; Domènech Ò
    J Mol Recognit; 2015 Nov; 28(11):679-86. PubMed ID: 26046777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. 2. Site-directed fluorescence studies.
    Wu J; Kaback HR
    Biochemistry; 1994 Oct; 33(40):12166-71. PubMed ID: 7918438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A conformational change in the lactose permease of Escherichia coli is induced by ligand binding or membrane potential.
    Jung H; Jung K; Kaback HR
    Protein Sci; 1994 Jul; 3(7):1052-7. PubMed ID: 7920250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of lactose permease of Escherichia coli on the anisotropy and electrostatic surface potential of liposomes.
    Merino-Montero S; Montero MT; Hernández-Borrell J
    Biophys Chem; 2006 Jan; 119(1):101-5. PubMed ID: 16242835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of lactose permease on the phospholipid environment in which it is reconstituted: a fluorescence and atomic force microscopy study.
    Merino S; Domènech O; Viñas M; Montero MT; Hernández-Borrell J
    Langmuir; 2005 May; 21(10):4642-7. PubMed ID: 16032883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential. off.
    Frillingos S; Gonzalez A; Kaback HR
    Biochemistry; 1997 Nov; 36(47):14284-90. PubMed ID: 9400367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization and functional reconstitution of a soluble form of the hydrophobic membrane protein lac permease from Escherichia coli.
    Roepe PD; Kaback HR
    Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6087-91. PubMed ID: 2668955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Helix packing of lactose permease in Escherichia coli studied by site-directed chemical cleavage.
    Wu J; Perrin DM; Sigman DS; Kaback HR
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9186-90. PubMed ID: 7568098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of ligand or monoclonal antibody 4B1 induces discrete structural changes in the lactose permease of Escherichia coli.
    Frillingos S; Wu J; Venkatesan P; Kaback HR
    Biochemistry; 1997 May; 36(21):6408-14. PubMed ID: 9174357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interlamellar coupling of phospholipid bilayers in liposomes: an emergent property of lipid rearrangement.
    Parry MJ; Hagen M; Mouritsen OG; Kinnunen PK; Alakoskela JM
    Langmuir; 2010 Apr; 26(7):4909-15. PubMed ID: 20180577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phospholipid-lactose permease interaction as reported by a head-labeled pyrene phosphatidylethanolamine: a FRET study.
    Suárez-Germà C; Loura LM; Prieto M; Domènech Ò; Campanera JM; Montero MT; Hernández-Borrell J
    J Phys Chem B; 2013 Jun; 117(22):6741-8. PubMed ID: 23647499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of cysteine residues in the lac permease of Escherichia coli.
    Menick DR; Lee JA; Brooker RJ; Wilson TH; Kaback HR
    Biochemistry; 1987 Feb; 26(4):1132-6. PubMed ID: 3552042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of a functional lactose permease devoid of cysteine residues.
    van Iwaarden PR; Pastore JC; Konings WN; Kaback HR
    Biochemistry; 1991 Oct; 30(40):9595-600. PubMed ID: 1911745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.