These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 9138655)

  • 1. Fatigue properties and stem subsidence in wire coil reinforced PMMA bone cement: a preliminary in vitro study.
    Kim JK; Park JB
    Biomed Mater Eng; 1996; 6(6):453-62. PubMed ID: 9138655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement of bone cement around prostheses by pre-coated wire coil: a preliminary study.
    Kim JK; Park JB
    Biomed Mater Eng; 1994; 4(5):369-80. PubMed ID: 8000291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement of bone cement around prostheses by pre-coated wire coil: a finite element model study.
    Grosland N; Kim JK; Park JB
    Biomed Mater Eng; 1995; 5(1):29-36. PubMed ID: 7773144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement of PMMA bone cement with a continuous wire coil--a 3D finite element study.
    Frigstad JR; Park JB
    Biomed Mater Eng; 1996; 6(6):429-39. PubMed ID: 9138653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement of bone cement around the femoral prosthesis tip by pre-coated wire coil: a human cadaver bone study.
    Kim JK; Park JB
    Biomed Mater Eng; 1996; 6(3):159-64. PubMed ID: 8922261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture toughness of steel-fiber-reinforced bone cement.
    Kotha SP; Li C; Schmid SR; Mason JJ
    J Biomed Mater Res A; 2004 Sep; 70(3):514-21. PubMed ID: 15293326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement of PMMA bone cement with a continuous wire coil--a canine femur study.
    Frigstad JR; Kang YH; Park JB
    Biomed Mater Eng; 1997; 7(4):245-51. PubMed ID: 9408576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New polymer materials in total hip arthroplasty. Evaluation with radiostereometry, bone densitometry, radiography and clinical parameters.
    Digas G
    Acta Orthop Suppl; 2005 Feb; 76(315):3-82. PubMed ID: 15790289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.
    Nuño N; Madrala A; Plamondon D
    J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The load carrying and fatigue properties of the stem-cement interface with smooth and porous coated femoral components.
    Manley MT; Stern LS; Gurtowski J
    J Biomed Mater Res; 1985; 19(5):563-75. PubMed ID: 4066729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stiffness optimisation of cement and stem materials in total hip replacement.
    Hedia HS
    Biomed Mater Eng; 2001; 11(1):1-10. PubMed ID: 11281574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bending properties of wire-reinforced bone cement for applications in spinal fixation.
    Saha S; Kraay MJ
    J Biomed Mater Res; 1979 May; 13(3):443-57. PubMed ID: 438229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape optimization of metal backing for cemented acetabular cup.
    Hedia HS; Abdel-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of elastic modulus of the backing material on the fatigue notch factor and stress.
    Hedia HS; Abdl-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(3-4):141-56. PubMed ID: 11202144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of bone cement: a review.
    Saha S; Pal S
    J Biomed Mater Res; 1984 Apr; 18(4):435-62. PubMed ID: 6376513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conus hip prosthesis.
    Wagner H; Wagner M
    Acta Chir Orthop Traumatol Cech; 2001; 68(4):213-21. PubMed ID: 11706545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic creep behavior of acrylic bone cement.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 1995 May; 29(5):575-81. PubMed ID: 7622542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants.
    Nuño N; Groppetti R; Senin N
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):956-62. PubMed ID: 16860449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.