These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9139177)

  • 41. The influence of crank length and cadence on mechanical efficiency in hand cycling.
    Goosey-Tolfrey VL; Alfano H; Fowler N
    Eur J Appl Physiol; 2008 Jan; 102(2):189-94. PubMed ID: 17909841
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasma volume shifts during progressive arm and leg exercise.
    Miles DS; Sawka MN; Glaser RM; Petrofsky JS
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Feb; 54(2):491-5. PubMed ID: 6833045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changing relative crank angle increases the metabolic cost of leg cycling.
    Straw AH; Hoogkamer W; Kram R
    Eur J Appl Physiol; 2017 Oct; 117(10):2021-2027. PubMed ID: 28785797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxygen uptake/heart rate relationship in leg and arm exercise, sitting and standing.
    Vokac Z; Bell H; Bautz-Holter E; Rodahl K
    J Appl Physiol; 1975 Jul; 39(1):54-9. PubMed ID: 1150592
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Excess post-exercise oxygen consumption in untrained men following exercise of equal energy expenditure: comparisons of upper and lower body exercise.
    Lyons S; Richardson M; Bishop P; Smith J; Heath H; Giesen J
    Diabetes Obes Metab; 2007 Nov; 9(6):889-94. PubMed ID: 17924871
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heat exchange during upper- and lower-body exercise.
    Sawka MN; Gonzalez RR; Drolet LL; Pandolf KB
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Oct; 57(4):1050-4. PubMed ID: 6501026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differences in cardiorespiratory responses during and after arm crank and cycle exercise.
    Louhevaara V; Sovijärvi A; Ilmarinen J; Teräslinna P
    Acta Physiol Scand; 1990 Feb; 138(2):133-43. PubMed ID: 2316376
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Circulatory and metabolic responses of women to arm crank and wheelchair ergometry.
    Sedlock DA; Knowlton RG; Fitzgerald PI
    Arch Phys Med Rehabil; 1990 Feb; 71(2):97-100. PubMed ID: 2302053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Submaximal arm crank ergometry: Effects of crank axis positioning on mechanical efficiency, physiological strain and perceived discomfort.
    van Drongelen S; Maas JC; Scheel-Sailer A; Van Der Woude LH
    J Med Eng Technol; 2009; 33(2):151-7. PubMed ID: 19205993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic cost of stride rate, resistance, and combined use of arms and legs on the elliptical trainer.
    Mier CM; Feito Y
    Res Q Exerc Sport; 2006 Dec; 77(4):507-13. PubMed ID: 17243225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cardiorespiratory and metabolic responses to positive, negative and minimum-load dynamic leg exercise.
    Hesser CM; Linnarsson D; Bjurstedt H
    Respir Physiol; 1977 Jun; 30(1-2):51-67. PubMed ID: 877450
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Defining the number of bouts and oxygen uptake during the "Tabata protocol" performed at different intensities.
    Viana RB; Naves JPA; de Lira CAB; Coswig VS; Del Vecchio FB; Vieira CA; Gentil P
    Physiol Behav; 2018 May; 189():10-15. PubMed ID: 29486169
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physiological responses to prolonged upper-body exercise.
    Pimental NA; Sawka MN; Billings DS; Trad LA
    Med Sci Sports Exerc; 1984 Aug; 16(4):360-5. PubMed ID: 6493015
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cardiorespiratory responses to exercises of equal relative intensity distributed between the upper and lower body.
    Faria EW; Faria IE
    J Sports Sci; 1998 May; 16(4):309-15. PubMed ID: 9663955
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gas exchange during maximal upper extremity exercise.
    Martin TW; Zeballos RJ; Weisman IM
    Chest; 1991 Feb; 99(2):420-5. PubMed ID: 1989805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ventilatory thresholds in arm and leg exercises with spontaneously chosen crank and pedal rates.
    Dekerle J; Dupont L; Caby I; Marais G; Vanvelcenaher J; Lavoie JM; Pelayo P
    Percept Mot Skills; 2002 Dec; 95(3 Pt 2):1035-46. PubMed ID: 12578244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of crank rate on the slow component of pulmonary O(2) uptake during heavy arm-crank exercise.
    Smith PM; McCrindle E; Doherty M; Price MJ; Jones AM
    Appl Physiol Nutr Metab; 2006 Jun; 31(3):292-301. PubMed ID: 16770358
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Classifying Intensity Domains From Arm Cycle Ergometry Differs Versus Leg Cycling Ergometry.
    Astorino TA; Robson T; McMillan DW
    J Strength Cond Res; 2023 Nov; 37(11):2192-2199. PubMed ID: 37883398
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Substrate utilization during arm and leg exercise relative to the ventilatory threshold in men.
    Yasuda N; Ruby BC; Gaskill SE
    J Sports Med Phys Fitness; 2002 Dec; 42(4):403-8. PubMed ID: 12391433
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ventilatory threshold and work efficiency during exercise on a cycle and rowing ergometer.
    Bunc V; Leso J
    J Sports Sci; 1993 Feb; 11(1):43-8. PubMed ID: 8450585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.