These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 9139672)

  • 1. On the voltage dependence of the mitochondrial permeability transition pore. A critical appraisal.
    Scorrano L; Petronilli V; Bernardi P
    J Biol Chem; 1997 May; 272(19):12295-9. PubMed ID: 9139672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of mitochondrial K(+) permeability and reactive oxygen species production by the p13 protein of human T-cell leukemia virus type 1.
    Silic-Benussi M; Cannizzaro E; Venerando A; Cavallari I; Petronilli V; La Rocca N; Marin O; Chieco-Bianchi L; Di Lisa F; D'Agostino DM; Bernardi P; Ciminale V
    Biochim Biophys Acta; 2009 Jul; 1787(7):947-54. PubMed ID: 19366603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+.
    Petronilli V; Cola C; Bernardi P
    J Biol Chem; 1993 Jan; 268(2):1011-6. PubMed ID: 7678245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory uncoupling by increased H(+) or K(+) flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition.
    Morota S; Piel S; Hansson MJ
    BMC Cell Biol; 2013 Sep; 14():40. PubMed ID: 24053891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane depolarization of isolated rat liver mitochondria attenuates permeability transition pore opening and oxidant production.
    Aronis A; Komarnitsky R; Shilo S; Tirosh O
    Antioxid Redox Signal; 2002 Aug; 4(4):647-54. PubMed ID: 12230877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria.
    Petronilli V; Cola C; Massari S; Colonna R; Bernardi P
    J Biol Chem; 1993 Oct; 268(29):21939-45. PubMed ID: 8408050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species.
    Kowaltowski AJ; Castilho RF; Vercesi AE
    FEBS Lett; 1996 Jan; 378(2):150-2. PubMed ID: 8549822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The participation of pyridine nucleotides redox state and reactive oxygen in the fatty acid-induced permeability transition in rat liver mitochondria.
    Catisti R; Vercesi AE
    FEBS Lett; 1999 Dec; 464(1-2):97-101. PubMed ID: 10611491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume.
    Hansson MJ; Morota S; Teilum M; Mattiasson G; Uchino H; Elmér E
    J Biol Chem; 2010 Jan; 285(1):741-50. PubMed ID: 19880514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of glutamate receptors in cultured hippocampal neurons causes Ca2+-dependent mitochondrial contraction.
    Brustovetsky T; Li V; Brustovetsky N
    Cell Calcium; 2009 Jul; 46(1):18-29. PubMed ID: 19409612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation.
    Brennan JP; Southworth R; Medina RA; Davidson SM; Duchen MR; Shattock MJ
    Cardiovasc Res; 2006 Nov; 72(2):313-21. PubMed ID: 16950237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of K+ channels induces apoptosis in vascular smooth muscle cells.
    Krick S; Platoshyn O; Sweeney M; Kim H; Yuan JX
    Am J Physiol Cell Physiol; 2001 Apr; 280(4):C970-9. PubMed ID: 11245614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation.
    Nicolli A; Petronilli V; Bernardi P
    Biochemistry; 1993 Apr; 32(16):4461-5. PubMed ID: 7682848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carvedilol in heart mitochondria: protonophore or opener of the mitochondrial K(ATP) channels?
    Oliveira PJ; Rolo AP; Sardão VA; Coxito PM; Palmeira CM; Moreno AJ
    Life Sci; 2001 Jun; 69(2):123-32. PubMed ID: 11441902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the permeability transition pore by inhibition of the mitochondrial K(ATP) channel in liver vs. brain mitochondria.
    Kupsch K; Parvez S; Siemen D; Wolf G
    J Membr Biol; 2007 Feb; 215(2-3):69-74. PubMed ID: 17415609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability.
    Bernardi P; Veronese P; Petronilli V
    J Biol Chem; 1993 Jan; 268(2):1005-10. PubMed ID: 8419309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of the non-selective mitochondrial pore in lymphoid cells. 2. Intact rat thymocytes.
    Chernyak BV
    Biochemistry (Mosc); 1999 Aug; 64(8):922-8. PubMed ID: 10498809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ induces a cyclosporin A-insensitive permeability transition pore in isolated potato tuber mitochondria mediated by reactive oxygen species.
    Fortes F; Castilho RF; Catisti R; Carnieri EG; Vercesi AE
    J Bioenerg Biomembr; 2001 Feb; 33(1):43-51. PubMed ID: 11460925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria.
    Brustovetsky N; Dubinsky JM
    J Neurosci; 2000 Nov; 20(22):8229-37. PubMed ID: 11069928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial sequestration and Ca(2+)-dependent release of cytosolic Zn(2+) loads in cortical neurons.
    Sensi SL; Ton-That D; Weiss JH
    Neurobiol Dis; 2002 Jul; 10(2):100-8. PubMed ID: 12127148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.