These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9139991)

  • 1. A fiber matrix model for the filtration through fenestral pores in a compressible arterial intima.
    Huang Y; Rumschitzki D; Chien S; Weinbaum S
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H2023-39. PubMed ID: 9139991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes in rat aortic intima due to transmural pressure.
    Huang Y; Jan KM; Rumschitzki D; Weinbaum S
    J Biomech Eng; 1998 Aug; 120(4):476-83. PubMed ID: 10412418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquaporin-1 shifts the critical transmural pressure to compress the aortic intima and change transmural flow: theory and implications.
    Joshi S; Jan KM; Rumschitzki DS
    Am J Physiol Heart Circ Physiol; 2015 Dec; 309(11):H1974-86. PubMed ID: 26342066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1589-97. PubMed ID: 10775138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall.
    Tada S; Tarbell JM
    Ann Biomed Eng; 2001 Jun; 29(6):456-66. PubMed ID: 11459339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima.
    Huang Y; Rumschitzki D; Chien S; Weinbaum S
    J Biomech Eng; 1994 Nov; 116(4):430-45. PubMed ID: 7869719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intimal and medial contributions to the hydraulic resistance of the arterial wall at different pressures: a combined computational and experimental study.
    Chooi KY; Comerford A; Sherwin SJ; Weinberg PD
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27307514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular transport in the arterial intima: comparison of chronic and acute injuries.
    Penn MS; Rangaswamy S; Saidel GM; Chisolm GM
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1560-70. PubMed ID: 9139937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of shear stress over smooth muscle cells in deformable arterial wall.
    Dabagh M; Jalali P; Konttinen YT; Sarkomaa P
    Med Biol Eng Comput; 2008 Jul; 46(7):649-57. PubMed ID: 18386089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension.
    Dabagh M; Jalali P; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2009 Sep; 297(3):H983-96. PubMed ID: 19592615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport in rat vessel walls. I. Hydraulic conductivities of the aorta, pulmonary artery, and inferior vena cava with intact and denuded endothelia.
    Shou Y; Jan KM; Rumschitzki DS
    Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H2758-71. PubMed ID: 16731638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The study of wall deformation and flow distribution with transmural pressure by three-dimensional model of thoracic aorta wall.
    Dabagh M; Jalali P; Konttinen YT
    Med Eng Phys; 2009 Sep; 31(7):816-24. PubMed ID: 19356969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations).
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H576-84. PubMed ID: 11788405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H905-13. PubMed ID: 15016628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular transport in the arterial wall: alternative models for estimating barriers.
    Lee K; Saidel GM; Penn MS
    Ann Biomed Eng; 2005 Nov; 33(11):1491-503. PubMed ID: 16341918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study.
    Karner G; Perktold K
    J Biomech; 2000 Jun; 33(6):709-15. PubMed ID: 10807992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N; Ando J; Chen X; Hisada T
    J Biomech Eng; 2007 Jun; 129(3):374-85. PubMed ID: 17536904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain.
    Valenta J; Vitek K; Cihak R; Konvickova S; Sochor M; Horny L
    Biomed Mater Eng; 2002; 12(2):121-34. PubMed ID: 12122236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new view of convective-diffusive transport processes in the arterial intima.
    Yuan F; Chien S; Weinbaum S
    J Biomech Eng; 1991 Aug; 113(3):314-29. PubMed ID: 1921359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and determination of material properties for porohyperelastic analysis of large arteries.
    Simon BR; Kaufmann MV; McAfee MA; Baldwin AL; Wilson LM
    J Biomech Eng; 1998 Apr; 120(2):188-94. PubMed ID: 10412379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.