BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9140052)

  • 1. Facilitated transport in vasa recta: theoretical effects on solute exchange in the medullary microcirculation.
    Edwards A; Pallone TL
    Am J Physiol; 1997 Apr; 272(4 Pt 2):F505-14. PubMed ID: 9140052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of microvascular water and solute exchanges in the renal medulla.
    Pallone TL; Morgenthaler TI; Deen WM
    Am J Physiol; 1984 Aug; 247(2 Pt 2):F303-15. PubMed ID: 6465323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of plasma proteins across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2001 Sep; 281(3):F478-92. PubMed ID: 11502597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiunit model of solute and water removal by inner medullary vasa recta.
    Edwards A; Pallone TL
    Am J Physiol; 1998 Apr; 274(4):H1202-10. PubMed ID: 9575923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The renal medullary microcirculation.
    Edwards A; Silldforff EP; Pallone TL
    Front Biosci; 2000 Jun; 5():E36-52. PubMed ID: 10833463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical effects of UTB urea transporters in the renal medullary microcirculation.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F731-47. PubMed ID: 12824077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Countercurrent exchange in the renal medulla.
    Pallone TL; Turner MR; Edwards A; Jamison RL
    Am J Physiol Regul Integr Comp Physiol; 2003 May; 284(5):R1153-75. PubMed ID: 12676741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interstitial water and solute recovery by inner medullary vasa recta.
    Edwards A; Delong MJ; Pallone TL
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F257-69. PubMed ID: 10662730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal medullary microcirculation: architecture and exchange.
    Michel CC
    Microcirculation; 1995 Aug; 2(2):125-39. PubMed ID: 7497165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.
    Yuan J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F265-72. PubMed ID: 20392798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling exchange of plasma proteins between microcirculation and interstitium of the renal medulla.
    Wang W; Michel CC
    Am J Physiol Renal Physiol; 2000 Aug; 279(2):F334-44. PubMed ID: 10919854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance of descending vasa recta to the transport of water.
    Pallone TL; Work J; Jamison RL
    Am J Physiol; 1990 Oct; 259(4 Pt 2):F688-97. PubMed ID: 1699435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of sodium and urea in outer medullary descending vasa recta.
    Pallone TL; Work J; Myers RL; Jamison RL
    J Clin Invest; 1994 Jan; 93(1):212-22. PubMed ID: 8282790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of anastomoses on solute transcapillary exchange in countercurrent systems.
    Wang W; Michel CC
    Microcirculation; 1997 Sep; 4(3):381-90. PubMed ID: 9329014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology of the renal medullary microcirculation.
    Pallone TL; Zhang Z; Rhinehart K
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F253-66. PubMed ID: 12529271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow.
    Kim J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F273-9. PubMed ID: 20392799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The medullary microcirculation.
    Zimmerhackl BL; Robertson CR; Jamison RL
    Kidney Int; 1987 Feb; 31(2):641-7. PubMed ID: 3550235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An examination of transcapillary water flux in renal inner medulla.
    Sanjana VM; Johnston PA; Robertson CR; Jamison RL
    Am J Physiol; 1976 Aug; 231(2):313-8. PubMed ID: 961881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of sodium chloride and water in rat ascending vasa recta.
    Pallone TL
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F519-25. PubMed ID: 1887911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen transport across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1042-55. PubMed ID: 12181134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.