These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 9140064)

  • 1. Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein disulphide bond catalyst of Escherichia coli.
    Kishigami S; Ito K
    Genes Cells; 1996 Feb; 1(2):201-8. PubMed ID: 9140064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway.
    Kobayashi T; Ito K
    EMBO J; 1999 Mar; 18(5):1192-8. PubMed ID: 10064586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the electron transfer catalyst DsbB from Escherichia coli.
    Grauschopf U; Fritz A; Glockshuber R
    EMBO J; 2003 Jul; 22(14):3503-13. PubMed ID: 12853466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade.
    Inaba K; Ito K
    EMBO J; 2002 Jun; 21(11):2646-54. PubMed ID: 12032077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA.
    Guilhot C; Jander G; Martin NL; Beckwith J
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9895-9. PubMed ID: 7568240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB.
    Inaba K; Murakami S; Nakagawa A; Iida H; Kinjo M; Ito K; Suzuki M
    EMBO J; 2009 Mar; 28(6):779-91. PubMed ID: 19214188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation.
    Inaba K; Murakami S; Suzuki M; Nakagawa A; Yamashita E; Okada K; Ito K
    Cell; 2006 Nov; 127(4):789-801. PubMed ID: 17110337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DsbA-DsbB interaction through their active site cysteines. Evidence from an odd cysteine mutant of DsbA.
    Kishigami S; Kanaya E; Kikuchi M; Ito K
    J Biol Chem; 1995 Jul; 270(29):17072-4. PubMed ID: 7615498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins.
    Andersen CL; Matthey-Dupraz A; Missiakas D; Raina S
    Mol Microbiol; 1997 Oct; 26(1):121-32. PubMed ID: 9383195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the cytosolic loop of DsbB in catalytic turnover of the ubiquinone-DsbB complex.
    Takahashi YH; Inaba K; Ito K
    Antioxid Redox Signal; 2006; 8(5-6):743-52. PubMed ID: 16771666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DsbB catalyzes disulfide bond formation de novo.
    Regeimbal J; Bardwell JC
    J Biol Chem; 2002 Sep; 277(36):32706-13. PubMed ID: 12072444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivities of quinone-free DsbB from Escherichia coli.
    Inaba K; Takahashi YH; Ito K
    J Biol Chem; 2005 Sep; 280(38):33035-44. PubMed ID: 16027117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA.
    Kadokura H; Beckwith J
    EMBO J; 2002 May; 21(10):2354-63. PubMed ID: 12006488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulphide bond formation to an Escherichia coli strain lacking DsbA.
    Chng SS; Dutton RJ; Denoncin K; Vertommen D; Collet JF; Kadokura H; Beckwith J
    Mol Microbiol; 2012 Sep; 85(5):996-1006. PubMed ID: 22809289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells.
    Kobayashi T; Kishigami S; Sone M; Inokuchi H; Mogi T; Ito K
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11857-62. PubMed ID: 9342327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine.
    Inaba K; Ito K
    Biochim Biophys Acta; 2008 Apr; 1783(4):520-9. PubMed ID: 18082634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds.
    Sambongi Y; Ferguson SJ
    FEBS Lett; 1996 Dec; 398(2-3):265-8. PubMed ID: 8977120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox states of DsbA in the periplasm of Escherichia coli.
    Kishigami S; Akiyama Y; Ito K
    FEBS Lett; 1995 May; 364(1):55-8. PubMed ID: 7750543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation.
    Inaba K; Takahashi YH; Fujieda N; Kano K; Miyoshi H; Ito K
    J Biol Chem; 2004 Feb; 279(8):6761-8. PubMed ID: 14634016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pathway for disulfide bond formation in vivo.
    Bardwell JC; Lee JO; Jander G; Martin N; Belin D; Beckwith J
    Proc Natl Acad Sci U S A; 1993 Feb; 90(3):1038-42. PubMed ID: 8430071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.