These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9140871)

  • 1. Analytical study on the kinematic and dynamic behaviors of a knee joint.
    Ling ZK; Guo HQ; Boersma S
    Med Eng Phys; 1997 Jan; 19(1):29-36. PubMed ID: 9140871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional dynamic behaviour of the human knee joint under impact loading.
    Abdel-Rahman EM; Hefzy MS
    Med Eng Phys; 1998 Jun; 20(4):276-90. PubMed ID: 9728679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cruciate ligament loading during isometric muscle contractions. A theoretical basis for rehabilitation.
    Zavatsky AB; Beard DJ; O'Connor JJ
    Am J Sports Med; 1994; 22(3):418-23. PubMed ID: 8037285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inverse dynamics modeling approach to determine the restraining function of human knee ligament bundles.
    Mommersteeg TJ; Huiskes R; Blankevoort L; Kooloos JG; Kauer JM
    J Biomech; 1997 Feb; 30(2):139-46. PubMed ID: 9001934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct in vitro measurement of forces in the cruciate ligaments. Part I: The effect of multiplane loading in the intact knee.
    Wascher DC; Markolf KL; Shapiro MS; Finerman GA
    J Bone Joint Surg Am; 1993 Mar; 75(3):377-86. PubMed ID: 8444916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro forces in the normal and cruciate-deficient knee during simulated squatting motion.
    Singerman R; Berilla J; Archdeacon M; Peyser A
    J Biomech Eng; 1999 Apr; 121(2):234-42. PubMed ID: 10211459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional anatomical model of the human patello-femoral joint, for the determination of patello-femoral motions and contact characteristics.
    Hefzy MS; Yang H
    J Biomed Eng; 1993 Jul; 15(4):289-302. PubMed ID: 8361154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct in vitro measurement of forces in the cruciate ligaments. Part II: The effect of section of the posterolateral structures.
    Markolf KL; Wascher DC; Finerman GA
    J Bone Joint Surg Am; 1993 Mar; 75(3):387-94. PubMed ID: 8444917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligaments and articular contact guide passive knee flexion.
    Wilson DR; Feikes JD; O'Connor JJ
    J Biomech; 1998 Dec; 31(12):1127-36. PubMed ID: 9882045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The geometry of the knee in the sagittal plane.
    O'Connor JJ; Shercliff TL; Biden E; Goodfellow JW
    Proc Inst Mech Eng H; 1989; 203(4):223-33. PubMed ID: 2701960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis.
    Beynnon B; Yu J; Huston D; Fleming B; Johnson R; Haugh L; Pope MH
    J Biomech Eng; 1996 May; 118(2):227-39. PubMed ID: 8738789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia.
    Shimokochi Y; Ambegaonkar JP; Meyer EG
    J Athl Train; 2016 Sep; 51(9):669-681. PubMed ID: 27723362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical estimates of cruciate ligament forces: effects of tibial surface geometry and ligament orientations.
    Imran A; O'Connor JJ
    Proc Inst Mech Eng H; 1997; 211(6):425-39. PubMed ID: 9509881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The patella: A mechanical determinant of coordination during vertical jumping.
    Cleather DJ
    J Theor Biol; 2018 Jun; 446():205-211. PubMed ID: 29548734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the geometry of the tibia on prediction of the cruciate ligament forces: a theoretical analysis.
    Chan SC; Seedhom BB
    Proc Inst Mech Eng H; 1995; 209(1):17-30. PubMed ID: 7669117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation.
    Harner CD; Xerogeanes JW; Livesay GA; Carlin GJ; Smith BA; Kusayama T; Kashiwaguchi S; Woo SL
    Am J Sports Med; 1995; 23(6):736-45. PubMed ID: 8600743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Equivalent geometry' of the knee and the prediction of tensions along the cruciates: an experimental study.
    Chan SC; Seedhom BB
    J Biomech; 1999 Jan; 32(1):35-48. PubMed ID: 10050950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression.
    Marouane H; Shirazi-Adl A; Adouni M; Hashemi J
    J Biomech; 2014 Apr; 47(6):1353-9. PubMed ID: 24576586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.