These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 9140893)

  • 1. 1996 J.B. Wolffe Memorial Lecture. Challenging beliefs: ex Africa semper aliquid novi.
    Noakes TD
    Med Sci Sports Exerc; 1997 May; 29(5):571-90. PubMed ID: 9140893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximal oxygen uptake: "classical" versus "contemporary" viewpoints: a rebuttal.
    Noakes TD
    Med Sci Sports Exerc; 1998 Sep; 30(9):1381-98. PubMed ID: 9741607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance.
    Noakes TD
    Scand J Med Sci Sports; 2000 Jun; 10(3):123-45. PubMed ID: 10843507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia.
    Noakes TD; Peltonen JE; Rusko HK
    J Exp Biol; 2001 Sep; 204(Pt 18):3225-34. PubMed ID: 11581338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological implications of altitude training for endurance performance at sea level: a review.
    Bailey DM; Davies B
    Br J Sports Med; 1997 Sep; 31(3):183-90. PubMed ID: 9298550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Logical limitations to the "catastrophe" models of fatigue during exercise in humans.
    Noakes TD; St Clair Gibson A
    Br J Sports Med; 2004 Oct; 38(5):648-9. PubMed ID: 15388560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limiting factors for maximum oxygen uptake and determinants of endurance performance.
    Bassett DR; Howley ET
    Med Sci Sports Exerc; 2000 Jan; 32(1):70-84. PubMed ID: 10647532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance.
    Fiorenza M; Lemminger AK; Marker M; Eibye K; Iaia FM; Bangsbo J; Hostrup M
    FASEB J; 2019 Aug; 33(8):8976-8989. PubMed ID: 31136218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What governs skeletal muscle VO2max? New evidence.
    Richardson RS
    Med Sci Sports Exerc; 2000 Jan; 32(1):100-7. PubMed ID: 10647536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.
    Rivera-Brown AM; Frontera WR
    PM R; 2012 Nov; 4(11):797-804. PubMed ID: 23174541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase.
    Nyberg M; Egelund J; Mandrup CM; Andersen CB; Hansen KMBE; Hergel IF; Valbak-Andersen N; Frikke-Schmidt R; Stallknecht B; Bangsbo J; Hellsten Y
    J Physiol; 2017 May; 595(9):2969-2983. PubMed ID: 28231611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximal oxygen uptake: "classical" versus "contemporary" viewpoints.
    Bassett DR; Howley ET
    Med Sci Sports Exerc; 1997 May; 29(5):591-603. PubMed ID: 9140894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic threshold: review of the concept and directions for future research.
    Brooks GA
    Med Sci Sports Exerc; 1985 Feb; 17(1):22-34. PubMed ID: 3884959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Enhancement: What Are the Physiological Limits?
    Lundby C; Robach P
    Physiology (Bethesda); 2015 Jul; 30(4):282-92. PubMed ID: 26136542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time to move beyond a brainless exercise physiology: the evidence for complex regulation of human exercise performance.
    Noakes TD
    Appl Physiol Nutr Metab; 2011 Feb; 36(1):23-35. PubMed ID: 21326375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes.
    Jacobs RA; Rasmussen P; Siebenmann C; Díaz V; Gassmann M; Pesta D; Gnaiger E; Nordsborg NB; Robach P; Lundby C
    J Appl Physiol (1985); 2011 Nov; 111(5):1422-30. PubMed ID: 21885805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and metabolic responses to increasing work rates: relevance for exercise prescription.
    Dennis SC; Noakes TD
    J Sports Sci; 1998 Jan; 16 Suppl():S77-84. PubMed ID: 22587720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle blood flow and mitochondrial function: influence of aging.
    Terjung RL; Zarzeczny R; Yang HT
    Int J Sport Nutr Exerc Metab; 2002 Sep; 12(3):368-78. PubMed ID: 12432180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximal oxygen uptake "classical" versus "contemporary" viewpoints.
    Bergh U; Ekblom B; Astrand PO
    Med Sci Sports Exerc; 2000 Jan; 32(1):85-8. PubMed ID: 10647533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.