These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 9140909)

  • 81. Effects of minimal dose of strength training on running performance in female recreational runners.
    Štohanzl M; Baláš J; Draper N
    J Sports Med Phys Fitness; 2018 Sep; 58(9):1211-1217. PubMed ID: 28462571
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Maximal lactate steady state in trained adolescent runners.
    Almarwaey OA; Jones AM; Tolfrey K
    J Sports Sci; 2004 Feb; 22(2):215-25. PubMed ID: 14998099
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Effectiveness of cycle cross-training between competitive seasons in female distance runners.
    White LJ; Dressendorfer RH; Muller SM; Ferguson MA
    J Strength Cond Res; 2003 May; 17(2):319-23. PubMed ID: 12741870
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Aging and factors related to running economy.
    Quinn TJ; Manley MJ; Aziz J; Padham JL; MacKenzie AM
    J Strength Cond Res; 2011 Nov; 25(11):2971-9. PubMed ID: 21982960
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The Validation of Session Rating of Perceived Exertion for Quantifying Internal Training Load in Adolescent Distance Runners.
    Mann RH; Williams CA; Clift BC; Barker AR
    Int J Sports Physiol Perform; 2019 Mar; 14(3):354-359. PubMed ID: 30160557
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Neuroendocrine system and mental function in sedentary and endurance-trained elderly males.
    Strüder HK; Hollmann W; Platen P; Rost R; Weicker H; Kirchhof O; Weber K
    Int J Sports Med; 1999 Apr; 20(3):159-66. PubMed ID: 10333092
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Concurrent inspiratory muscle and cardiovascular training differentially improves both perceptions of effort and 5000 m running performance compared with cardiovascular training alone.
    Edwards AM; Wells C; Butterly R
    Br J Sports Med; 2008 Oct; 42(10):823-7. PubMed ID: 18308881
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Effect of increased and maintained frequency of speed endurance training on performance and muscle adaptations in runners.
    Skovgaard C; Almquist NW; Bangsbo J
    J Appl Physiol (1985); 2017 Jan; 122(1):48-59. PubMed ID: 27856713
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A five year physiological case study of an Olympic runner.
    Jones AM
    Br J Sports Med; 1998 Mar; 32(1):39-43. PubMed ID: 9562162
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Maximal strength training improves running economy in distance runners.
    Støren O; Helgerud J; Støa EM; Hoff J
    Med Sci Sports Exerc; 2008 Jun; 40(6):1087-92. PubMed ID: 18460997
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The effect of high- vs. low-intensity training on aerobic capacity in well-trained male middle-distance runners.
    Enoksen E; Shalfawi SA; Tønnessen E
    J Strength Cond Res; 2011 Mar; 25(3):812-8. PubMed ID: 20647950
    [TBL] [Abstract][Full Text] [Related]  

  • 92. [Pronation angle of the rear foot during running in relation to load].
    Fromme A; Winkelmann F; Thorwesten L; Reer R; Jerosch J
    Sportverletz Sportschaden; 1997 Jun; 11(2):52-7. PubMed ID: 9333971
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The validity and accuracy of blood lactate measurements for prediction of maximal endurance running capacity. Dependency of analyzed blood media in combination with different designs of the exercise test.
    Foxdal P; Sjödin B; Sjödin A; Ostman B
    Int J Sports Med; 1994 Feb; 15(2):89-95. PubMed ID: 8157375
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Improved running economy following intensified training correlates with reduced ventilatory demands.
    Franch J; Madsen K; Djurhuus MS; Pedersen PK
    Med Sci Sports Exerc; 1998 Aug; 30(8):1250-6. PubMed ID: 9710865
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Blood lactate response, oxygen consumption, and muscle activity during treadmill running with constraint.
    Haudum A; Birklbauer J; Sieghartsleitner R; Gonaus C; Müller E
    Percept Mot Skills; 2014 Aug; 119(1):20-37. PubMed ID: 25153735
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Running performance in middle-school runners.
    Malison ER; Plank DM; Brown JD; Cheatham CC; Mahon AD
    J Sports Med Phys Fitness; 2004 Dec; 44(4):383-8. PubMed ID: 15758850
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A comparison of methods for estimating the lactate threshold.
    McGehee JC; Tanner CJ; Houmard JA
    J Strength Cond Res; 2005 Aug; 19(3):553-8. PubMed ID: 16095403
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A 1-day maximal lactate steady-state assessment protocol for trained runners.
    Palmer AS; Potteiger JA; Nau KL; Tong RJ
    Med Sci Sports Exerc; 1999 Sep; 31(9):1336-41. PubMed ID: 10487377
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effects of different uphill interval-training programs on running economy and performance.
    Barnes KR; Hopkins WG; McGuigan MR; Kilding AE
    Int J Sports Physiol Perform; 2013 Nov; 8(6):639-47. PubMed ID: 23538293
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Glycogen Utilization during Running: Intensity, Sex, and Muscle-Specific Responses.
    Impey SG; Jevons E; Mees G; Cocks M; Strauss J; Chester N; Laurie I; Target D; Hodgson A; Shepherd SO; Morton JP
    Med Sci Sports Exerc; 2020 Sep; 52(9):1966-1975. PubMed ID: 32168106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.