BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 9140978)

  • 1. Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion.
    Rockey DD; Grosenbach D; Hruby DE; Peacock MG; Heinzen RA; Hackstadt T
    Mol Microbiol; 1997 Apr; 24(1):217-28. PubMed ID: 9140978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells.
    Rockey DD; Heinzen RA; Hackstadt T
    Mol Microbiol; 1995 Feb; 15(4):617-26. PubMed ID: 7783634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion.
    Hackstadt T; Scidmore-Carlson MA; Shaw EI; Fischer ER
    Cell Microbiol; 1999 Sep; 1(2):119-30. PubMed ID: 11207546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol.
    Brown WJ; Skeiky YA; Probst P; Rockey DD
    Infect Immun; 2002 Oct; 70(10):5860-4. PubMed ID: 12228318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane.
    Bannantine JP; Rockey DD; Hackstadt T
    Mol Microbiol; 1998 Jun; 28(5):1017-26. PubMed ID: 9663687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy.
    Rockey DD; Fischer ER; Hackstadt T
    Infect Immun; 1996 Oct; 64(10):4269-78. PubMed ID: 8926099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane.
    Suchland RJ; Rockey DD; Bannantine JP; Stamm WE
    Infect Immun; 2000 Jan; 68(1):360-7. PubMed ID: 10603409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA.
    Alzhanov D; Barnes J; Hruby DE; Rockey DD
    BMC Microbiol; 2004 Jul; 4():24. PubMed ID: 15230981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional interaction between type III-secreted protein IncA of Chlamydophila psittaci and human G3BP1.
    Borth N; Litsche K; Franke C; Sachse K; Saluz HP; Hänel F
    PLoS One; 2011 Jan; 6(1):e16692. PubMed ID: 21304914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates.
    Bannantine JP; Stamm WE; Suchland RJ; Rockey DD
    Infect Immun; 1998 Dec; 66(12):6017-21. PubMed ID: 9826388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.
    Bannantine JP; Griffiths RS; Viratyosin W; Brown WJ; Rockey DD
    Cell Microbiol; 2000 Feb; 2(1):35-47. PubMed ID: 11207561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body.
    Rockey DD; Rosquist JL
    Infect Immun; 1994 Jan; 62(1):106-12. PubMed ID: 8262615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of fusion of Chlamydia trachomatis inclusions at 32 degrees C correlates with restricted export of IncA.
    Fields KA; Fischer E; Hackstadt T
    Infect Immun; 2002 Jul; 70(7):3816-23. PubMed ID: 12065525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization and characterization of two putative TMH family proteins in Chlamydia psittaci.
    Wu H; Wang C; Jiang C; Xie Y; Liu L; Song Y; Ma X; Wu Y
    Microbiol Res; 2016 Feb; 183():19-25. PubMed ID: 26805615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of a type III secretion system in Chlamydophila psittaci.
    Beeckman DS; Geens T; Timmermans JP; Van Oostveldt P; Vanrompay DC
    Vet Res; 2008; 39(3):27. PubMed ID: 18275803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Functional Core of IncA Is Required for Chlamydia trachomatis Inclusion Fusion.
    Weber MM; Noriea NF; Bauler LD; Lam JL; Sager J; Wesolowski J; Paumet F; Hackstadt T
    J Bacteriol; 2016 Apr; 198(8):1347-55. PubMed ID: 26883826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian 14-3-3beta associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG.
    Scidmore MA; Hackstadt T
    Mol Microbiol; 2001 Mar; 39(6):1638-50. PubMed ID: 11260479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophan recycling is responsible for the interferon-gamma resistance of Chlamydia psittaci GPIC in indoleamine dioxygenase-expressing host cells.
    Wood H; Roshick C; McClarty G
    Mol Microbiol; 2004 May; 52(3):903-16. PubMed ID: 15101993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage infection of the obligate intracellular bacterium, Chlamydia psittaci strain guinea pig inclusion conjunctivitis.
    Hsia R; Ohayon H; Gounon P; Dautry-Varsat A; Bavoil PM
    Microbes Infect; 2000 Jun; 2(7):761-72. PubMed ID: 10955956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and antigenicity of chlamydial proteins that bind eukaryotic cell membrane proteins.
    Baghian A; Schnorr KL
    Am J Vet Res; 1992 Jun; 53(6):980-6. PubMed ID: 1378251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.