BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9141121)

  • 1. The effects of prosthesis mass on metabolic cost of ambulation in non-vascular trans-tibial amputees.
    Gailey RS; Nash MS; Atchley TA; Zilmer RM; Moline-Little GR; Morris-Cresswell N; Siebert LI
    Prosthet Orthot Int; 1997 Apr; 21(1):9-16. PubMed ID: 9141121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy expenditure of trans-tibial amputees during ambulation at self-selected pace.
    Gailey RS; Wenger MA; Raya M; Kirk N; Erbs K; Spyropoulos P; Nash MS
    Prosthet Orthot Int; 1994 Aug; 18(2):84-91. PubMed ID: 7991365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CAT-CAM socket and quadrilateral socket: a comparison of energy cost during ambulation.
    Gailey RS; Lawrence D; Burditt C; Spyropoulos P; Newell C; Nash MS
    Prosthet Orthot Int; 1993 Aug; 17(2):95-100. PubMed ID: 8233775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy expenditure of below-knee amputees during harness-supported treadmill ambulation.
    Hunter D; Smith Cole E; Murray JM; Murray TD
    J Orthop Sports Phys Ther; 1995 May; 21(5):268-76. PubMed ID: 7787850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of energy expenditure by a high level trans-femoral amputee using the Intelligent Prosthesis and conventionally damped prosthetic limbs.
    Taylor MB; Clark E; Offord EA; Baxter C
    Prosthet Orthot Int; 1996 Aug; 20(2):116-21. PubMed ID: 8876005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control.
    Datta D; Heller B; Howitt J
    Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The efficacy of physiological cost index (PCI) measurement of a subject walking with an Intelligent Prosthesis.
    Chin T; Sawamura S; Fujita H; Nakajima S; Ojima I; Oyabu H; Nagakura Y; Otsuka H; Nakagawa A
    Prosthet Orthot Int; 1999 Apr; 23(1):45-9. PubMed ID: 10355642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy cost of walking of below-knee amputees having no vascular disease.
    Pagliarulo MA; Waters R; Hislop HJ
    Phys Ther; 1979 May; 59(5):538-43. PubMed ID: 441113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy expenditure of transfemoral amputees walking on a horizontal and tilted treadmill simulating different outdoor walking conditions.
    Starholm IM; Gjovaag T; Mengshoel AM
    Prosthet Orthot Int; 2010 Jun; 34(2):184-94. PubMed ID: 20141493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The prediction of metabolic energy expenditure during gait from mechanical energy of the limb: a preliminary study.
    Foerster SA; Bagley AM; Mote CD; Skinner HB
    J Rehabil Res Dev; 1995 May; 32(2):128-34. PubMed ID: 7562652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid 'ankle': insights from body centre of mass dynamics.
    Askew GN; McFarlane LA; Minetti AE; Buckley JG
    J Neuroeng Rehabil; 2019 Mar; 16(1):39. PubMed ID: 30871573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy expenditure and gait characteristics of a bilateral amputee walking with C-leg prostheses compared with stubby and conventional articulating prostheses.
    Perry J; Burnfield JM; Newsam CJ; Conley P
    Arch Phys Med Rehabil; 2004 Oct; 85(10):1711-7. PubMed ID: 15468036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the effects of carbon fiber and bionic foot during overground and treadmill walking in transtibial amputees.
    Delussu AS; Brunelli S; Paradisi F; Iosa M; Pellegrini R; Zenardi D; Traballesi M
    Gait Posture; 2013 Sep; 38(4):876-82. PubMed ID: 23702342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energy cost for the step-to-step transition in amputee walking.
    Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W
    Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between energy cost, gait speed, vertical displacement of centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait.
    Detrembleur C; Vanmarsenille JM; De Cuyper F; Dierick F
    Gait Posture; 2005 Apr; 21(3):333-40. PubMed ID: 15760750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbohydrate and fat oxidation in persons with lower limb amputation during walking with different speeds.
    Gjovaag T; Mirtaheri P; Starholm IM
    Prosthet Orthot Int; 2018 Jun; 42(3):304-310. PubMed ID: 29119861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of an Intelligent Prosthesis (IP) on the walking ability of young transfemoral amputees: comparison of IP users with able-bodied people.
    Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Machida K; Nakagawa A
    Am J Phys Med Rehabil; 2003 Jun; 82(6):447-51. PubMed ID: 12820787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy costs & performance of transtibial amputees & non-amputees during walking & running.
    Mengelkoch LJ; Kahle JT; Highsmith MJ
    Int J Sports Med; 2014 Dec; 35(14):1223-8. PubMed ID: 25144429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy cost of walking: comparison of "intelligent prosthesis" with conventional mechanism.
    Buckley JG; Spence WD; Solomonidis SE
    Arch Phys Med Rehabil; 1997 Mar; 78(3):330-3. PubMed ID: 9084360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of prosthetic mass distribution on metabolic costs and walking symmetry.
    Smith JD; Martin PE
    J Appl Biomech; 2013 Jun; 29(3):317-28. PubMed ID: 22977207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.