These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9141132)

  • 1. Structure prediction and fold recognition for the ferrochelatase family of proteins.
    Hansson M; Gough SP; Brody SS
    Proteins; 1997 Apr; 27(4):517-22. PubMed ID: 9141132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein fold recognition by mapping predicted secondary structures.
    Russell RB; Copley RR; Barton GJ
    J Mol Biol; 1996 Jun; 259(3):349-65. PubMed ID: 8676374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction.
    Bork P; Holm L; Koonin EV; Sander C
    Proteins; 1995 Jul; 22(3):259-66. PubMed ID: 7479698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins.
    Di Francesco V; Garnier J; Munson PJ
    J Mol Biol; 1997 Mar; 267(2):446-63. PubMed ID: 9096237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fold recognition and ab initio structure predictions using hidden Markov models and beta-strand pair potentials.
    Hubbard TJ; Park J
    Proteins; 1995 Nov; 23(3):398-402. PubMed ID: 8710832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine.
    Blair DE; van Aalten DM
    FEBS Lett; 2004 Jul; 570(1-3):13-9. PubMed ID: 15251431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment and searching for common protein folds using a data bank of structural templates.
    Johnson MS; Overington JP; Blundell TL
    J Mol Biol; 1993 Jun; 231(3):735-52. PubMed ID: 8515448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein secondary structure: entropy, correlations and prediction.
    Crooks GE; Brenner SE
    Bioinformatics; 2004 Jul; 20(10):1603-11. PubMed ID: 14988117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the efficiency of evolutionary change-based and side chain orientation-based fold recognition potentials.
    Vishnepolsky B; Managadze G; Pirtskhalava M
    Proteins; 2008 Jun; 71(4):1863-78. PubMed ID: 18175309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DPANN: improved sequence to structure alignments following fold recognition.
    Reinhardt A; Eisenberg D
    Proteins; 2004 Aug; 56(3):528-38. PubMed ID: 15229885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel fold recognition method using composite predicted secondary structures.
    An Y; Friesner RA
    Proteins; 2002 Aug; 48(2):352-66. PubMed ID: 12112702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae.
    McGuire AT; Keates RA; Cook S; Mangroo D
    Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Search for the most stable folds of protein chains: III. Improvement in fold recognition by averaging over homologous sequences and 3D structures.
    Rykunov DS; Lobanov MY; Finkelstein AV
    Proteins; 2000 Aug; 40(3):494-501. PubMed ID: 10861941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.