These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 9141134)
1. The reaction pathway of the isomerization of D-xylose catalyzed by the enzyme D-xylose isomerase: a theoretical study. Hu H; Liu H; Shi Y Proteins; 1997 Apr; 27(4):545-55. PubMed ID: 9141134 [TBL] [Abstract][Full Text] [Related]
2. Molecular modelling of xylose isomerase catalysis: the role of electrostatics and charge transfer to metals. Fuxreiter M; Farkas O; Náray-Szabó G Protein Eng; 1995 Sep; 8(9):925-33. PubMed ID: 8746730 [TBL] [Abstract][Full Text] [Related]
3. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site-directed mutagenesis. van Tilbeurgh H; Jenkins J; Chiadmi M; Janin J; Wodak SJ; Mrabet NT; Lambeir AM Biochemistry; 1992 Jun; 31(24):5467-71. PubMed ID: 1610793 [TBL] [Abstract][Full Text] [Related]
4. X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Lavie A; Allen KN; Petsko GA; Ringe D Biochemistry; 1994 May; 33(18):5469-80. PubMed ID: 8180169 [TBL] [Abstract][Full Text] [Related]
5. Hydride transfer catalyzed by xylose isomerase: mechanism and quantum effects. Garcia-Viloca M; Alhambra C; Truhlar DG; Gao J J Comput Chem; 2003 Jan; 24(2):177-90. PubMed ID: 12497598 [TBL] [Abstract][Full Text] [Related]
6. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose. Whitlow M; Howard AJ; Finzel BC; Poulos TL; Winborne E; Gilliland GL Proteins; 1991; 9(3):153-73. PubMed ID: 2006134 [TBL] [Abstract][Full Text] [Related]
7. Isotopic exchange plus substrate and inhibition kinetics of D-xylose isomerase do not support a proton-transfer mechanism. Allen KN; Lavie A; Farber GK; Glasfeld A; Petsko GA; Ringe D Biochemistry; 1994 Feb; 33(6):1481-7. PubMed ID: 8312268 [TBL] [Abstract][Full Text] [Related]
8. Role of the divalent metal ion in sugar binding, ring opening, and isomerization by D-xylose isomerase: replacement of a catalytic metal by an amino acid. Allen KN; Lavie A; Glasfeld A; Tanada TN; Gerrity DP; Carlson SC; Farber GK; Petsko GA; Ringe D Biochemistry; 1994 Feb; 33(6):1488-94. PubMed ID: 7906142 [TBL] [Abstract][Full Text] [Related]
9. Binding energy and catalysis by D-xylose isomerase: kinetic, product, and X-ray crystallographic analysis of enzyme-catalyzed isomerization of (R)-glyceraldehyde. Toteva MM; Silvaggi NR; Allen KN; Richard JP Biochemistry; 2011 Nov; 50(46):10170-81. PubMed ID: 21995300 [TBL] [Abstract][Full Text] [Related]
10. Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine. Lee CY; Bagdasarian M; Meng MH; Zeikus JG J Biol Chem; 1990 Nov; 265(31):19082-90. PubMed ID: 2229064 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanics simulations of a conformational rearrangement of D-xylose in the active site of D-xylose isomerase. Smart OS; Akins J; Blow DM Proteins; 1992 Apr; 13(2):100-11. PubMed ID: 1620692 [TBL] [Abstract][Full Text] [Related]
12. X-ray analysis of D-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator. Carrell HL; Glusker JP; Burger V; Manfre F; Tritsch D; Biellmann JF Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4440-4. PubMed ID: 2734296 [TBL] [Abstract][Full Text] [Related]
13. Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. Collyer CA; Henrick K; Blow DM J Mol Biol; 1990 Mar; 212(1):211-35. PubMed ID: 2319597 [TBL] [Abstract][Full Text] [Related]
14. Quantum dynamics of hydride transfer catalyzed by bimetallic electrophilic catalysis: synchronous motion of Mg(2+) and H(-) in xylose isomerase. Garcia-Viloca M; Alhambra C; Truhlar DG; Gao J J Am Chem Soc; 2002 Jun; 124(25):7268-9. PubMed ID: 12071725 [TBL] [Abstract][Full Text] [Related]
15. Switching substrate preference of thermophilic xylose isomerase from D-xylose to D-glucose by redesigning the substrate binding pocket. Meng M; Lee C; Bagdasarian M; Zeikus JG Proc Natl Acad Sci U S A; 1991 May; 88(9):4015-9. PubMed ID: 2023950 [TBL] [Abstract][Full Text] [Related]
16. Probing the roles of active site residues in D-xylose isomerase. Whitaker RD; Cho Y; Cha J; Carrell HL; Glusker JP; Karplus PA; Batt CA J Biol Chem; 1995 Sep; 270(39):22895-906. PubMed ID: 7559425 [TBL] [Abstract][Full Text] [Related]
17. Theoretical examination of the mechanism of aldose-ketose isomerization. Zheng YJ; Merz KM; Farber GK Protein Eng; 1993 Jul; 6(5):479-84. PubMed ID: 8415575 [TBL] [Abstract][Full Text] [Related]
18. The role of active-site aromatic and polar residues in catalysis and substrate discrimination by xylose isomerase. Meng M; Bagdasarian M; Zeikus JG Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8459-63. PubMed ID: 8378319 [TBL] [Abstract][Full Text] [Related]
19. Engineering the substrate specificity of xylose isomerase. Karimäki J; Parkkinen T; Santa H; Pastinen O; Leisola M; Rouvinen J; Turunen O Protein Eng Des Sel; 2004 Dec; 17(12):861-9. PubMed ID: 15713782 [TBL] [Abstract][Full Text] [Related]
20. Comparative kinetics of D-xylose and D-glucose isomerase activities of the D-xylose isomerase from Thermus aquaticus HB8. Lehmacher A; Bisswanger H Biol Chem Hoppe Seyler; 1990 Jun; 371(6):527-36. PubMed ID: 2390219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]