These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 9141196)

  • 1. Presynaptic inhibition of elicited neurotransmitter release.
    Wu LG; Saggau P
    Trends Neurosci; 1997 May; 20(5):204-12. PubMed ID: 9141196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor-mediated regulation of calcium channels and neurotransmitter release.
    Miller RJ
    FASEB J; 1990 Dec; 4(15):3291-9. PubMed ID: 1979294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic mechanisms regulating Ca2+ concentration triggering acetylcholine release at an identified neuro-neuronal synapse of Aplysia.
    Fossier P; Baux G; Tauc L
    Neuroscience; 1994 Nov; 63(2):405-14. PubMed ID: 7891854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic disruption of transmitter release by lead.
    Suszkiw JB
    Neurotoxicology; 2004 Jun; 25(4):599-604. PubMed ID: 15183013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.
    Kwon SK; Sando R; Lewis TL; Hirabayashi Y; Maximov A; Polleux F
    PLoS Biol; 2016 Jul; 14(7):e1002516. PubMed ID: 27429220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Endoplasmic reticulum and regulation of neuromediator release in presynaptic terminals].
    Verkhrats'kyÄ­ ON; Fedulova SA
    Fiziol Zh (1994); 2004; 50(4):142-9. PubMed ID: 15460039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of transmitter release by action potential duration at the hippocampal CA3-CA1 synapse.
    Qian J; Saggau P
    J Neurophysiol; 1999 Jan; 81(1):288-98. PubMed ID: 9914289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential.
    Felmy F; Neher E; Schneggenburger R
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15200-5. PubMed ID: 14630950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release.
    Emptage NJ; Reid CA; Fine A
    Neuron; 2001 Jan; 29(1):197-208. PubMed ID: 11182091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-dependent mechanisms of presynaptic control at central synapses.
    Rusakov DA
    Neuroscientist; 2006 Aug; 12(4):317-26. PubMed ID: 16840708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmitter release and calcium currents at an Aplysia buccal ganglion synapse--II. Modulation by presynaptic receptors.
    Baux G; Fossier P; Trudeau LE; Tauc L
    Neuroscience; 1993 Mar; 53(2):581-93. PubMed ID: 8098518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presynaptic internal Ca2+ stores contribute to inhibitory neurotransmitter release onto mouse cerebellar Purkinje cells.
    Bardo S; Robertson B; Stephens GJ
    Br J Pharmacol; 2002 Oct; 137(4):529-37. PubMed ID: 12359635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics.
    Rozov A; Burnashev N; Sakmann B; Neher E
    J Physiol; 2001 Mar; 531(Pt 3):807-26. PubMed ID: 11251060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic ionotropic receptors and control of transmitter release.
    Engelman HS; MacDermott AB
    Nat Rev Neurosci; 2004 Feb; 5(2):135-45. PubMed ID: 14735116
    [No Abstract]   [Full Text] [Related]  

  • 15. Millisecond Ca
    Mochida S
    Proc Jpn Acad Ser B Phys Biol Sci; 2017; 93(10):802-820. PubMed ID: 29225307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of G-protein-mediated Ca2+ channel inhibition for neurotransmitter release and facilitation.
    Bertram R; Behan M
    J Comput Neurosci; 1999; 7(3):197-211. PubMed ID: 10596833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion channels in presynaptic nerve terminals and control of transmitter release.
    Meir A; Ginsburg S; Butkevich A; Kachalsky SG; Kaiserman I; Ahdut R; Demirgoren S; Rahamimoff R
    Physiol Rev; 1999 Jul; 79(3):1019-88. PubMed ID: 10390521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective inhibition of spontaneous but not Ca2+ -dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices.
    Glitsch M
    J Neurophysiol; 2006 Jul; 96(1):86-96. PubMed ID: 16611839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic calcium current modulation by a metabotropic glutamate receptor.
    Takahashi T; Forsythe ID; Tsujimoto T; Barnes-Davies M; Onodera K
    Science; 1996 Oct; 274(5287):594-7. PubMed ID: 8849448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels.
    Yazejian B; Sun XP; Grinnell AD
    Nat Neurosci; 2000 Jun; 3(6):566-71. PubMed ID: 10816312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.