These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9141487)

  • 21. Phenotypic classes of phenoloxidase-negative mutants of the lignin-degrading fungus Phanerochaete chrysosporium.
    Liwicki R; Paterson A; MacDonald MJ; Broda P
    J Bacteriol; 1985 May; 162(2):641-4. PubMed ID: 3921527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioremediation of paper and pulp mill effluents.
    Murugesan K
    Indian J Exp Biol; 2003 Nov; 41(11):1239-48. PubMed ID: 15332490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass.
    Mathieu Y; Piumi F; Valli R; Aramburu JC; Ferreira P; Faulds CB; Record E
    Appl Environ Microbiol; 2016 Apr; 82(8):2411-2423. PubMed ID: 26873317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus nematoloma frowardii.
    Hofrichter M; Vares T; Kalsi M; Galkin S; Scheibner K; Fritsche W; Hatakka A
    Appl Environ Microbiol; 1999 May; 65(5):1864-70. PubMed ID: 10223971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization.
    Bourbonnais R; Paice MG; Reid ID; Lanthier P; Yaguchi M
    Appl Environ Microbiol; 1995 May; 61(5):1876-80. PubMed ID: 7646025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus.
    Eggert C
    Microbiol Res; 1997 Sep; 152(3):315-8. PubMed ID: 9352667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical characterization, molecular cloning and expression of laccases - a divergent gene family - in poplar.
    Ranocha P; McDougall G; Hawkins S; Sterjiades R; Borderies G; Stewart D; Cabanes-Macheteau M; Boudet AM; Goffner D
    Eur J Biochem; 1999 Jan; 259(1-2):485-95. PubMed ID: 9914531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation mechanisms of phenolic beta-1 lignin substructure model compounds by laccase of Coriolus versicolor.
    Kawai S; Umezawa T; Higuchi T
    Arch Biochem Biophys; 1988 Apr; 262(1):99-110. PubMed ID: 3355177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selection of Pycnoporus cinnabarinus strains for laccase production.
    Herpoël I; Moukha S; Lesage-Meessen L; Sigoillot J; Asther M
    FEMS Microbiol Lett; 2000 Feb; 183(2):301-6. PubMed ID: 10675601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cooperation between ligninolytic enzymes produced by superior mixed flora.
    Wang HL; Li ZY; Guo WY; Wang ZY; Pan F
    J Environ Sci (China); 2005; 17(4):620-2. PubMed ID: 16158591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laccase component of the Ceriporiopsis subvermispora lignin-degrading system.
    Fukushima Y; Kirk TK
    Appl Environ Microbiol; 1995 Mar; 61(3):872-6. PubMed ID: 7793921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer.
    Lomascolo A; Record E; Herpoël-Gimbert I; Delattre M; Robert JL; Georis J; Dauvrin T; Sigoillot JC; Asther M
    J Appl Microbiol; 2003; 94(4):618-24. PubMed ID: 12631197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding lignin-degrading reactions of ligninolytic enzymes: binding affinity and interactional profile.
    Chen M; Zeng G; Tan Z; Jiang M; Li H; Liu L; Zhu Y; Yu Z; Wei Z; Liu Y; Xie G
    PLoS One; 2011; 6(9):e25647. PubMed ID: 21980516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tannic acid induces transcription of laccase gene cglcc1 in the white-rot fungus Coriolopsis gallica.
    Carbajo JM; Junca H; Terrón MC; González T; Yagüe S; Zapico E; González AE
    Can J Microbiol; 2002 Dec; 48(12):1041-7. PubMed ID: 12619815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Degradation of anthraquinone blue by Trametes trogii].
    Levin L; Jordan A; Forchiassin F; Viale A
    Rev Argent Microbiol; 2001; 33(4):223-8. PubMed ID: 11833254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata.
    Mäkelä MR; Lundell T; Hatakka A; Hildén K
    Fungal Biol; 2013 Jan; 117(1):62-70. PubMed ID: 23332834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Degradation of poplar wood by Fomes sclerodermeus: production of ligninolytic enzymes in sawdust of poplar and cedar].
    Papinutti VL; Diorio LA; Forchiassin F
    Rev Iberoam Micol; 2003 Mar; 20(1):16-20. PubMed ID: 12825976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterisation of coupling products formed by biotransformation of biphenyl and diphenyl ether by the white rot fungus Pycnoporus cinnabarinus.
    Jonas U; Hammer E; Haupt ET; Schauer F
    Arch Microbiol; 2000 Dec; 174(6):393-8. PubMed ID: 11195094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligninolytic enzymes of the white-rot fungus Phlebia radiata.
    Niku-Paavola ML; Karhunen E; Salola P; Raunio V
    Biochem J; 1988 Sep; 254(3):877-83. PubMed ID: 3196301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Enzymes of white rot fungi involved in lignin degradation].
    Papinutti VL; Forchiassin F
    Rev Argent Microbiol; 2000; 32(2):83-8. PubMed ID: 10885008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.