These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 9141507)

  • 1. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species.
    Brand KA; Hermfisse U
    FASEB J; 1997 Apr; 11(5):388-95. PubMed ID: 9141507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield.
    Brand K
    J Bioenerg Biomembr; 1997 Aug; 29(4):355-64. PubMed ID: 9387096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production.
    Greiner EF; Guppy M; Brand K
    J Biol Chem; 1994 Dec; 269(50):31484-90. PubMed ID: 7989314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism.
    Brand K
    Biochem J; 1985 Jun; 228(2):353-61. PubMed ID: 2861809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased formation of reactive oxygen species due to glucose depletion in primary cultures of rat thymocytes inhibits proliferation.
    Aulwurm UR; Brand KA
    Eur J Biochem; 2000 Sep; 267(18):5693-8. PubMed ID: 10971579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic alterations associated with proliferation of mitogen-activated lymphocytes and of lymphoblastoid cell lines: evaluation of glucose and glutamine metabolism.
    Brand K; Leibold W; Luppa P; Schoerner C; Schulz A
    Immunobiology; 1986 Oct; 173(1):23-34. PubMed ID: 3492437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-regulated expression of glycolytic enzymes in resting and proliferating rat thymocytes.
    Hamm-Künzelmann B; Schäfer D; Weigert C; Brand K
    FEBS Lett; 1997 Feb; 403(1):87-90. PubMed ID: 9038366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in DNA-binding efficiency of Sp1 to aldolase and pyruvate kinase promoter correlate with altered redox states in resting and proliferating rat thymocytes.
    Schäfer D; Hamm-Künzelmann B; Hermfisse U; Brand K
    FEBS Lett; 1996 Aug; 391(1-2):35-8. PubMed ID: 8706925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes.
    Guppy M; Greiner E; Brand K
    Eur J Biochem; 1993 Feb; 212(1):95-9. PubMed ID: 8444168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous oxygen radicals modulate protein tyrosine phosphorylation and JNK-1 activation in lectin-stimulated thymocytes.
    Pani G; Colavitti R; Borrello S; Galeotti T
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):173-81. PubMed ID: 10727416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic glycolysis and lymphocyte transformation.
    Hume DA; Radik JL; Ferber E; Weidemann MJ
    Biochem J; 1978 Sep; 174(3):703-9. PubMed ID: 310305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in glucose metabolism by cyclosporine in rat brain slices link to oxidative stress: interactions with mTOR inhibitors.
    Christians U; Gottschalk S; Miljus J; Hainz C; Benet LZ; Leibfritz D; Serkova N
    Br J Pharmacol; 2004 Oct; 143(3):388-96. PubMed ID: 15339861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate oxidation and ATP supply in AS-30D hepatoma cells.
    Rodríguez-Enríquez S; Torres-Márquez ME; Moreno-Sánchez R
    Arch Biochem Biophys; 2000 Mar; 375(1):21-30. PubMed ID: 10683245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetoacetate is a more efficient energy-yielding substrate for human mesenchymal stem cells than glucose and generates fewer reactive oxygen species.
    Board M; Lopez C; van den Bos C; Callaghan R; Clarke K; Carr C
    Int J Biochem Cell Biol; 2017 Jul; 88():75-83. PubMed ID: 28483672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of glycolysis and CO2 formation from glycerol by hydroxyl radical scavengers in rat hepatocytes.
    Gerber E; Bredy A; Kahl R
    Res Commun Mol Pathol Pharmacol; 1996 Oct; 94(1):63-71. PubMed ID: 8948015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-cycle-related metabolic and enzymatic events in proliferating rat thymocytes.
    Brand K; Aichinger S; Forster S; Kupper S; Neumann B; Nürnberg W; Ohrisch G
    Eur J Biochem; 1988 Mar; 172(3):695-702. PubMed ID: 3258238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
    Lunt SY; Vander Heiden MG
    Annu Rev Cell Dev Biol; 2011; 27():441-64. PubMed ID: 21985671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiological study.
    Schurr A; Payne RS
    Neuroscience; 2007 Jul; 147(3):613-9. PubMed ID: 17560727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased demand for NAD
    Luengo A; Li Z; Gui DY; Sullivan LB; Zagorulya M; Do BT; Ferreira R; Naamati A; Ali A; Lewis CA; Thomas CJ; Spranger S; Matheson NJ; Vander Heiden MG
    Mol Cell; 2021 Feb; 81(4):691-707.e6. PubMed ID: 33382985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interrelation between the inhibition of glycolytic flux by silibinin and the lowering of mitochondrial ROS production in perifused rat hepatocytes.
    Detaille D; Sanchez C; Sanz N; Lopez-Novoa JM; Leverve X; El-Mir MY
    Life Sci; 2008 May; 82(21-22):1070-6. PubMed ID: 18448125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.