These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 9141675)
1. Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae. García MJ; Ríos G; Ali R; Bellés JM; Serrano R Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1125-1131. PubMed ID: 9141675 [TBL] [Abstract][Full Text] [Related]
2. ISC1-encoded inositol phosphosphingolipid phospholipase C is involved in Na+/Li+ halotolerance of Saccharomyces cerevisiae. Betz C; Zajonc D; Moll M; Schweizer E Eur J Biochem; 2002 Aug; 269(16):4033-9. PubMed ID: 12180980 [TBL] [Abstract][Full Text] [Related]
3. Physiological basis for the high salt tolerance of Debaryomyces hansenii. Prista C; Almagro A; Loureiro-Dias MC; Ramos J Appl Environ Microbiol; 1997 Oct; 63(10):4005-9. PubMed ID: 9327565 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress. González-Hernández JC; Jiménez-Estrada M; Peña A Extremophiles; 2005 Feb; 9(1):7-16. PubMed ID: 15338455 [TBL] [Abstract][Full Text] [Related]
5. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Hounsa CG; Brandt EV; Thevelein J; Hohmann S; Prior BA Microbiology (Reading); 1998 Mar; 144 ( Pt 3)():671-680. PubMed ID: 9534237 [TBL] [Abstract][Full Text] [Related]
6. Glycerol production by yeasts under osmotic and sulfite stress. Petrovska B; Winkelhausen E; Kuzmanova S Can J Microbiol; 1999 Aug; 45(8):695-9. PubMed ID: 10528402 [TBL] [Abstract][Full Text] [Related]
7. Physiological studies on long-term adaptation to salt stress in the extremely halotolerant yeast Candida versatilis CBS 4019 (syn. C. halophila). Silva-Graça M; Lucas C FEMS Yeast Res; 2003 May; 3(3):247-60. PubMed ID: 12689633 [TBL] [Abstract][Full Text] [Related]
8. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Kaino T; Takagi H Appl Microbiol Biotechnol; 2008 May; 79(2):273-83. PubMed ID: 18351334 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. Rios G; Ferrando A; Serrano R Yeast; 1997 May; 13(6):515-28. PubMed ID: 9178503 [TBL] [Abstract][Full Text] [Related]
11. Four pathogenic Candida species differ in salt tolerance. Krauke Y; Sychrova H Curr Microbiol; 2010 Oct; 61(4):335-9. PubMed ID: 20300937 [TBL] [Abstract][Full Text] [Related]
12. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Rep M; Albertyn J; Thevelein JM; Prior BA; Hohmann S Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():715-727. PubMed ID: 10217506 [TBL] [Abstract][Full Text] [Related]
13. Regulation of monovalent ion homeostasis and pH by the Ser-Thr protein phosphatase SIT4 in Saccharomyces cerevisiae. Masuda CA; Ramírez J; Peña A; Montero-Lomelí M J Biol Chem; 2000 Oct; 275(40):30957-61. PubMed ID: 10921924 [TBL] [Abstract][Full Text] [Related]
14. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Shen B; Hohmann S; Jensen RG; Bohnert aH Plant Physiol; 1999 Sep; 121(1):45-52. PubMed ID: 10482659 [TBL] [Abstract][Full Text] [Related]
15. [The metabolism of trehalose and intracellular glycerol in Candida krusei responding to high osmosis]. Zhang Y; Liang M; Liu DH Sheng Wu Gong Cheng Xue Bao; 2001 May; 17(3):332-5. PubMed ID: 11517613 [TBL] [Abstract][Full Text] [Related]
16. Osmoregulation in Saccharomyces cerevisiae. Studies on the osmotic induction of glycerol production and glycerol-3-phosphate dehydrogenase (NAD+). André L; Hemming A; Adler L FEBS Lett; 1991 Jul; 286(1-2):13-7. PubMed ID: 1864360 [TBL] [Abstract][Full Text] [Related]
17. A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. Gaxiola R; de Larrinoa IF; Villalba JM; Serrano R EMBO J; 1992 Sep; 11(9):3157-64. PubMed ID: 1505513 [TBL] [Abstract][Full Text] [Related]
18. Identification of a novel HOG1 homologue from an industrial glycerol producer Candida glycerinogenes. Ji H; Lu X; Wang C; Zong H; Fang H; Sun J; Zhuge J; Zhuge B Curr Microbiol; 2014 Dec; 69(6):909-14. PubMed ID: 25119307 [TBL] [Abstract][Full Text] [Related]
19. Osmotic stress limits arsenic hypertolerance in Aspergillus sp. P37. Cánovas D; de Lorenzo V FEMS Microbiol Ecol; 2007 Aug; 61(2):258-63. PubMed ID: 17578525 [TBL] [Abstract][Full Text] [Related]
20. The osmotic hypersensitivity of the yeast Saccharomyces cerevisiae is strain and growth media dependent: quantitative aspects of the phenomenon. Blomberg A Yeast; 1997 May; 13(6):529-39. PubMed ID: 9178504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]