These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9142442)

  • 1. Hybrid muscular tissues: preparation of skeletal muscle cell-incorporated collagen gels.
    Okano T; Matsuda T
    Cell Transplant; 1997; 6(2):109-18. PubMed ID: 9142442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues.
    Okano T; Matsuda T
    Cell Transplant; 1998; 7(1):71-82. PubMed ID: 9489765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organized, tubular hybrid vascular tissue composed of vascular cells and collagen for low-pressure-loaded venous system.
    Hirai J; Matsuda T
    Cell Transplant; 1995; 4(6):597-608. PubMed ID: 8714781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly oriented, tubular hybrid vascular tissue for a low pressure circulatory system.
    Hirai J; Kanda K; Oka T; Matsuda T
    ASAIO J; 1994; 40(3):M383-8. PubMed ID: 8555543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue engineering of skeletal muscle. Highly dense, highly oriented hybrid muscular tissues biomimicking native tissues.
    Okano T; Satoh S; Oka T; Matsuda T
    ASAIO J; 1997; 43(5):M749-53. PubMed ID: 9360146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of compliant hybrid grafts supported with elastomeric meshes.
    Kobashi T; Matsuda T
    Cell Transplant; 1999; 8(5):477-88. PubMed ID: 10580342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture.
    Okano T; Matsuda T
    Cell Transplant; 1998; 7(5):435-42. PubMed ID: 9786063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique.
    Yamamoto Y; Ito A; Kato M; Kawabe Y; Shimizu K; Fujita H; Nagamori E; Kamihira M
    J Biosci Bioeng; 2009 Dec; 108(6):538-43. PubMed ID: 19914590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of branched hybrid vascular prostheses.
    Kobashi T; Matsuda T
    Tissue Eng; 1999 Dec; 5(6):515-24. PubMed ID: 10611543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process.
    Hirai J; Matsuda T
    Cell Transplant; 1996; 5(1):93-105. PubMed ID: 8665081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices.
    Kanda K; Matsuda T
    Cell Transplant; 1994; 3(6):481-92. PubMed ID: 7881760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro reconstruction of hybrid arterial media with molecular and cellular orientations.
    Kanda K; Matsuda T
    Cell Transplant; 1994; 3(6):537-45. PubMed ID: 7881764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblastic behavior of human bone marrow cells cultured over adsorbed collagen layer, over surface of collagen gels, and inside collagen gels.
    Fernandes LF; Costa MA; Fernandes MH; Tomás H
    Connect Tissue Res; 2009; 50(5):336-46. PubMed ID: 19863393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices.
    Shin YC; Lee JH; Jin L; Kim MJ; Kim YJ; Hyun JK; Jung TG; Hong SW; Han DW
    J Nanobiotechnology; 2015 Mar; 13():21. PubMed ID: 25886153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.
    Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M
    J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro.
    Aswad H; Jalabert A; Rome S
    BMC Biotechnol; 2016 Apr; 16():32. PubMed ID: 27038912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid formation of functional muscle in vitro using fibrin gels.
    Huang YC; Dennis RG; Larkin L; Baar K
    J Appl Physiol (1985); 2005 Feb; 98(2):706-13. PubMed ID: 15475606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic devices for construction of contractile skeletal muscle microtissues.
    Shimizu K; Araki H; Sakata K; Tonomura W; Hashida M; Konishi S
    J Biosci Bioeng; 2015 Feb; 119(2):212-6. PubMed ID: 25085533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.