BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9142832)

  • 1. Role of actin in regulation of epithelial sodium channels by CFTR.
    Ismailov II; Berdiev BK; Shlyonsky VG; Fuller CM; Prat AG; Jovov B; Cantiello HF; Ausiello DA; Benos DJ
    Am J Physiol; 1997 Apr; 272(4 Pt 1):C1077-86. PubMed ID: 9142832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of epithelial sodium channels by short actin filaments.
    Berdiev BK; Prat AG; Cantiello HF; Ausiello DA; Fuller CM; Jovov B; Benos DJ; Ismailov II
    J Biol Chem; 1996 Jul; 271(30):17704-10. PubMed ID: 8663510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator.
    Ismailov II; Awayda MS; Jovov B; Berdiev BK; Fuller CM; Dedman JR; Kaetzel M; Benos DJ
    J Biol Chem; 1996 Mar; 271(9):4725-32. PubMed ID: 8617738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cytosolic termini of the beta- and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel.
    Ji HL; Chalfant ML; Jovov B; Lockhart JP; Parker SB; Fuller CM; Stanton BA; Benos DJ
    J Biol Chem; 2000 Sep; 275(36):27947-56. PubMed ID: 10821834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cystic fibrosis transmembrane conductance regulator inhibits epithelial Na+ channels carrying Liddle's syndrome mutations.
    Hopf A; Schreiber R; Mall M; Greger R; Kunzelmann K
    J Biol Chem; 1999 May; 274(20):13894-9. PubMed ID: 10318798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between cystic fibrosis transmembrane conductance regulator and outwardly rectified chloride channels.
    Jovov B; Ismailov II; Berdiev BK; Fuller CM; Sorscher EJ; Dedman JR; Kaetzel MA; Benos DJ
    J Biol Chem; 1995 Dec; 270(49):29194-200. PubMed ID: 7493947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator.
    Kunzelmann K; Kiser GL; Schreiber R; Riordan JR
    FEBS Lett; 1997 Jan; 400(3):341-4. PubMed ID: 9009227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator.
    Kunzelmann K; Schreiber R; Nitschke R; Mall M
    Pflugers Arch; 2000 Jun; 440(2):193-201. PubMed ID: 10898518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of epithelial Na(+) channels by actin in planar lipid bilayers and in the Xenopus oocyte expression system.
    Jovov B; Tousson A; Ji HL; Keeton D; Shlyonsky V; Ripoll PJ; Fuller CM; Benos DJ
    J Biol Chem; 1999 Dec; 274(53):37845-54. PubMed ID: 10608849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ENaC activity requires CFTR channel function independently of phosphorylation in sweat duct.
    Reddy MM; Quinton PM
    J Membr Biol; 2005 Sep; 207(1):23-33. PubMed ID: 16463140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional interaction of CFTR and ENaC in sweat glands.
    Reddy MM; Quinton PM
    Pflugers Arch; 2003 Jan; 445(4):499-503. PubMed ID: 12548396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple-barrel organization of ENaC, a cloned epithelial Na+ channel.
    Ismailov II; Awayda MS; Berdiev BK; Bubien JK; Lucas JE; Fuller CM; Benos DJ
    J Biol Chem; 1996 Jan; 271(2):807-16. PubMed ID: 8557690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator.
    Cantiello HF
    Exp Physiol; 1996 May; 81(3):505-14. PubMed ID: 8737083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+.
    Ishikawa T; Marunaka Y; Rotin D
    J Gen Physiol; 1998 Jun; 111(6):825-46. PubMed ID: 9607939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regions in the carboxy terminus of alpha-bENaC involved in gating and functional effects of actin.
    Copeland SJ; Berdiev BK; Ji HL; Lockhart J; Parker S; Fuller CM; Benos DJ
    Am J Physiol Cell Physiol; 2001 Jul; 281(1):C231-40. PubMed ID: 11401846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cystic fibrosis transmembrane conductance regulator differentially regulates human and mouse epithelial sodium channels in Xenopus oocytes.
    Yan W; Samaha FF; Ramkumar M; Kleyman TR; Rubenstein RC
    J Biol Chem; 2004 May; 279(22):23183-92. PubMed ID: 15047694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cystic fibrosis transmembrane conductance regulator inverts protein kinase A-mediated regulation of epithelial sodium channel single channel kinetics.
    Stutts MJ; Rossier BC; Boucher RC
    J Biol Chem; 1997 May; 272(22):14037-40. PubMed ID: 9162024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl- channel function.
    Reddy MM; Light MJ; Quinton PM
    Nature; 1999 Nov; 402(6759):301-4. PubMed ID: 10580502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes.
    Mall M; Hipper A; Greger R; Kunzelmann K
    FEBS Lett; 1996 Feb; 381(1-2):47-52. PubMed ID: 8641437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase regulation of a cloned epithelial Na+ channel.
    Awayda MS; Ismailov II; Berdiev BK; Fuller CM; Benos DJ
    J Gen Physiol; 1996 Jul; 108(1):49-65. PubMed ID: 8817384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.