These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 9144278)

  • 21. Live Salmonella recruits N-ethylmaleimide-sensitive fusion protein on phagosomal membrane and promotes fusion with early endosome.
    Mukherjee K; Siddiqi SA; Hashim S; Raje M; Basu SK; Mukhopadhyay A
    J Cell Biol; 2000 Feb; 148(4):741-53. PubMed ID: 10684255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cdc42p functions at the docking stage of yeast vacuole membrane fusion.
    Müller O; Johnson DI; Mayer A
    EMBO J; 2001 Oct; 20(20):5657-65. PubMed ID: 11598009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles.
    Mayer A; Wickner W; Haas A
    Cell; 1996 Apr; 85(1):83-94. PubMed ID: 8620540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Throttles and dampers: controlling the engine of membrane fusion.
    Rothman JE; Söllner TH
    Science; 1997 May; 276(5316):1212-3. PubMed ID: 9182331
    [No Abstract]   [Full Text] [Related]  

  • 25. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion.
    Thorngren N; Collins KM; Fratti RA; Wickner W; Merz AJ
    EMBO J; 2004 Jul; 23(14):2765-76. PubMed ID: 15241469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the mechanism of protein-induced membrane fusion: from model to biological membranes.
    Hoekstra D; Martin I; Kahya N; Ruysschaert JM; Pécheur E
    Cell Mol Biol Lett; 2002; 7(2):231-2. PubMed ID: 12097928
    [No Abstract]   [Full Text] [Related]  

  • 27. NSF is up to new tricks.
    Schwarz TL
    Nat Cell Biol; 1999 Oct; 1(6):E141-3. PubMed ID: 10559970
    [No Abstract]   [Full Text] [Related]  

  • 28. SNARE protein structure and function.
    Ungar D; Hughson FM
    Annu Rev Cell Dev Biol; 2003; 19():493-517. PubMed ID: 14570579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13.
    McBride HM; Rybin V; Murphy C; Giner A; Teasdale R; Zerial M
    Cell; 1999 Aug; 98(3):377-86. PubMed ID: 10458612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes.
    Peng R; Gallwitz D
    J Cell Biol; 2002 May; 157(4):645-55. PubMed ID: 11994317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins.
    McNew JA; Parlati F; Fukuda R; Johnston RJ; Paz K; Paumet F; Söllner TH; Rothman JE
    Nature; 2000 Sep; 407(6801):153-9. PubMed ID: 11001046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Association of the fusion protein NSF with clathrin-coated vesicle membranes.
    Steel GJ; Tagaya M; Woodman PG
    EMBO J; 1996 Feb; 15(4):745-52. PubMed ID: 8631296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical analysis of the Saccharomyces cerevisiae SEC18 gene product: implications for the molecular mechanism of membrane fusion.
    Steel GJ; Laude AJ; Boojawan A; Harvey DJ; Morgan A
    Biochemistry; 1999 Jun; 38(24):7764-72. PubMed ID: 10387016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane fusion catalyzed by a Rab, SNAREs, and SNARE chaperones is accompanied by enhanced permeability to small molecules and by lysis.
    Zucchi PC; Zick M
    Mol Biol Cell; 2011 Dec; 22(23):4635-46. PubMed ID: 21976702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion.
    Collins KM; Thorngren NL; Fratti RA; Wickner WT
    EMBO J; 2005 May; 24(10):1775-86. PubMed ID: 15889152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases.
    Schnitzer JE; Liu J; Oh P
    J Biol Chem; 1995 Jun; 270(24):14399-404. PubMed ID: 7782301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A journey through the exocytic pathway.
    Béraud-Dufour S; Balch W
    J Cell Sci; 2002 May; 115(Pt 9):1779-80. PubMed ID: 11956309
    [No Abstract]   [Full Text] [Related]  

  • 38. [Targeting and fusion of vesicles in protein transport].
    Yoda K; Hashimoto H
    Tanpakushitsu Kakusan Koso; 1998 Feb; 43(2):148-58. PubMed ID: 9492597
    [No Abstract]   [Full Text] [Related]  

  • 39. Membrane fusion. Bridging the gap by AAA ATPases.
    Rowe T; Balch WE
    Nature; 1997 Jul; 388(6637):20-1. PubMed ID: 9214494
    [No Abstract]   [Full Text] [Related]  

  • 40. The pre-vacuolar t-SNARE AtPEP12p forms a 20S complex that dissociates in the presence of ATP.
    Bassham DC; Raikhel NV
    Plant J; 1999 Sep; 19(5):599-603. PubMed ID: 10504581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.