BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 9144346)

  • 1. New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix.
    Roach HI
    J Bone Miner Res; 1997 May; 12(5):795-805. PubMed ID: 9144346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of matrix acid and alkaline phosphatases with mineralization of cartilage and endochondral bone.
    Roach HI
    Histochem J; 1999 Jan; 31(1):53-61. PubMed ID: 10405823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA fragmentation during bone formation in neonatal rodents assessed by transferase-mediated end labeling.
    Bronckers AL; Goei W; Luo G; Karsenty G; D'Souza RN; Lyaruu DM; Burger EH
    J Bone Miner Res; 1996 Sep; 11(9):1281-91. PubMed ID: 8864903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix metalloproteinase-9 expression, tartrate-resistant acid phosphatase activity, and DNA fragmentation in vascular and cellular invasion into cartilage preceding primary endochondral ossification in long bones.
    Takahara M; Naruse T; Takagi M; Orui H; Ogino T
    J Orthop Res; 2004 Sep; 22(5):1050-7. PubMed ID: 15304278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leptin regulates chondrocyte differentiation and matrix maturation during endochondral ossification.
    Kishida Y; Hirao M; Tamai N; Nampei A; Fujimoto T; Nakase T; Shimizu N; Yoshikawa H; Myoui A
    Bone; 2005 Nov; 37(5):607-21. PubMed ID: 16039170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phenotypic switch from chondrocytes to bone-forming cells involves asymmetric cell division and apoptosis.
    Roach HI; Erenpreisa J
    Connect Tissue Res; 1996; 35(1-4):85-91. PubMed ID: 9084646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation.
    Ortega N; Wang K; Ferrara N; Werb Z; Vu TH
    Dis Model Mech; 2010; 3(3-4):224-35. PubMed ID: 20142327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cartilage resorption and endochondral bone formation during the development of long bones in chick embryos.
    Roach HI; Shearer JR
    Bone Miner; 1989 Jul; 6(3):289-309. PubMed ID: 2758158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of matrix metalloproteinases toward Meckel's cartilage resorption in mice: immunohistochemical studies, including comparisons with developing endochondral bones.
    Sakakura Y; Hosokawa Y; Tsuruga E; Irie K; Nakamura M; Yajima T
    Cell Tissue Res; 2007 Apr; 328(1):137-51. PubMed ID: 17136358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth cartilage calcification and formation of bone trabeculae are late and dissociated events in the endochondral ossification of Rana catesbeiana.
    Felisbino SL; Carvalho HF
    Cell Tissue Res; 2001 Nov; 306(2):319-23. PubMed ID: 11702243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trans-differentiation of hypertrophic chondrocytes into cells capable of producing a mineralized bone matrix.
    Roach HI
    Bone Miner; 1992 Oct; 19(1):1-20. PubMed ID: 1422302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of tartrate-resistant acid phosphatase (TRAP) in long bone development.
    Blumer MJ; Hausott B; Schwarzer C; Hayman AR; Stempel J; Fritsch H
    Mech Dev; 2012 Jul; 129(5-8):162-76. PubMed ID: 22579636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chondrocyte apoptosis in endochondral ossification of chick sterna.
    Gibson GJ; Kohler WJ; Schaffler MB
    Dev Dyn; 1995 Aug; 203(4):468-76. PubMed ID: 7496038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation.
    Chen Q; Johnson DM; Haudenschild DR; Goetinck PF
    Dev Biol; 1995 Nov; 172(1):293-306. PubMed ID: 7589809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does the epiphyseal cartilage of the long bones have one or two ossification fronts?
    Delgado-Martos MJ; Touza Fernández A; Canillas F; Quintana-Villamandos B; Santos del Riego S; Delgado-Martos E; Martos-Rodriguez A; Delgado-Baeza E
    Med Hypotheses; 2013 Oct; 81(4):695-700. PubMed ID: 23953967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification.
    Mackie EJ; Tatarczuch L; Mirams M
    J Endocrinol; 2011 Nov; 211(2):109-21. PubMed ID: 21642379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo.
    Galotto M; Campanile G; Robino G; Cancedda FD; Bianco P; Cancedda R
    J Bone Miner Res; 1994 Aug; 9(8):1239-49. PubMed ID: 7976506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parathyroid hormone [PTH(1-34)] and parathyroid hormone-related protein [PTHrP(1-34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast-like cells.
    Zerega B; Cermelli S; Bianco P; Cancedda R; Cancedda FD
    J Bone Miner Res; 1999 Aug; 14(8):1281-9. PubMed ID: 10457260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone tissue and histological and molecular events during development of the long bones.
    Blumer MJF
    Ann Anat; 2021 May; 235():151704. PubMed ID: 33600952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endochondral resorption of chick sterna in culture.
    Gibson GJ; Lin DL; Schaffler MB; Kimura JH
    J Orthop Res; 1995 Jul; 13(4):542-52. PubMed ID: 7674070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.