These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 9144433)

  • 1. Studies on the intracellular localization of acetyl-CoA carboxylase.
    Geelen MJ; Bijleveld C; Velasco G; Wanders RJ; Guzmán M
    Biochem Biophys Res Commun; 1997 Apr; 233(1):253-7. PubMed ID: 9144433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism.
    Velasco G; Geelen MJ; Guzmán M
    Arch Biochem Biophys; 1997 Jan; 337(2):169-75. PubMed ID: 9016810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of acetyl CoA carboxylase and carnitine palmitoyl transferase-1 in rat adipocytes.
    Zang Y; Wang T; Xie W; Wang-Fischer YL; Getty L; Han J; Corkey BE; Guo W
    Obes Res; 2005 Sep; 13(9):1530-9. PubMed ID: 16222055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of starvation on hepatic acyl-CoA synthetase, carnitine palmitoyltransferase-I, and acetyl-CoA carboxylase mRNA levels in rats.
    Ryu MH; Daily JW; Cha YS
    Nutrition; 2005 Apr; 21(4):537-42. PubMed ID: 15811777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of proglycosyn (LY177507) on fatty acid metabolism in rat hepatocytes.
    Guzmán M; Geelen MJ; Harris RA
    Arch Biochem Biophys; 1993 Aug; 305(1):141-6. PubMed ID: 8102045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin A deficiency modifies lipid metabolism in rat liver.
    Oliveros LB; Domeniconi MA; Vega VA; Gatica LV; Brigada AM; Gimenez MS
    Br J Nutr; 2007 Feb; 97(2):263-72. PubMed ID: 17298694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of trans fatty acids by hepatocytes.
    Guzmán M; Klein W; Gómez del Pulgar T; Geelen MJ
    Lipids; 1999 Apr; 34(4):381-6. PubMed ID: 10443971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids.
    Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C
    Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of malonyl-CoA in heart disease and the hypothalamic control of obesity.
    Folmes CD; Lopaschuk GD
    Cardiovasc Res; 2007 Jan; 73(2):278-87. PubMed ID: 17126822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats.
    Assifi MM; Suchankova G; Constant S; Prentki M; Saha AK; Ruderman NB
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E794-800. PubMed ID: 15956049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of protein restriction on the regulation of cardiac carnitine palmitoyltransferase by malonyl-CoA.
    Holness MJ; Priestman DA; Sugden MC
    J Mol Cell Cardiol; 1998 Jul; 30(7):1381-90. PubMed ID: 9710806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA.
    Lane MD; Wolfgang M; Cha SH; Dai Y
    Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S49-54. PubMed ID: 18719599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of extracellular ATP on hepatic fatty acid metabolism.
    Guzmán M; Velasco G; Castro J
    Am J Physiol; 1996 Apr; 270(4 Pt 1):G701-7. PubMed ID: 8928801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are cytoskeletal components involved in the control of hepatic carnitine palmitoyltransferase I activity?
    Velasco G; Sánchez C; Geelen MJ; Guzmán M
    Biochem Biophys Res Commun; 1996 Jul; 224(3):754-9. PubMed ID: 8713118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle.
    Kim JY; Koves TR; Yu GS; Gulick T; Cortright RN; Dohm GL; Muoio DM
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1014-22. PubMed ID: 11934665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle.
    Bezaire V; Heigenhauser GJ; Spriet LL
    Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E85-91. PubMed ID: 12954596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential carnitine/acylcarnitine translocase expression defines distinct metabolic signatures in skeletal muscle cells.
    Peluso G; Petillo O; Margarucci S; Grippo P; Melone MA; Tuccillo F; Calvani M
    J Cell Physiol; 2005 May; 203(2):439-46. PubMed ID: 15515015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels.
    Stefanovic-Racic M; Perdomo G; Mantell BS; Sipula IJ; Brown NF; O'Doherty RM
    Am J Physiol Endocrinol Metab; 2008 May; 294(5):E969-77. PubMed ID: 18349115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel effect of C75 on carnitine palmitoyltransferase I activity and palmitate oxidation.
    Bentebibel A; Sebastián D; Herrero L; López-Viñas E; Serra D; Asins G; Gómez-Puertas P; Hegardt FG
    Biochemistry; 2006 Apr; 45(14):4339-50. PubMed ID: 16584169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nutritional vitamin A deficiency on lipid metabolism in the rat heart: Its relation to PPAR gene expression.
    Vega VA; Anzulovich AC; Varas SM; Bonomi MR; Giménez MS; Oliveros LB
    Nutrition; 2009; 25(7-8):828-38. PubMed ID: 19342198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.