These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 9144446)
1. Confocal microscopic characterization of initial corneal changes of surfactant-induced eye irritation in the rabbit. Maurer JK; Li HF; Petroll WM; Parker RD; Cavanagh HD; Jester JV Toxicol Appl Pharmacol; 1997 Apr; 143(2):291-300. PubMed ID: 9144446 [TBL] [Abstract][Full Text] [Related]
2. Area and depth of surfactant-induced corneal injury predicts extent of subsequent ocular responses. Jester JV; Petroll WM; Bean J; Parker RD; Carr GJ; Cavanagh HD; Maurer JK Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2610-25. PubMed ID: 9856771 [TBL] [Abstract][Full Text] [Related]
3. Area and depth of surfactant-induced corneal injury correlates with cell death. Jester JV; Li HF; Petroll WM; Parker RD; Cavanagh HD; Carr GJ; Smith B; Maurer JK Invest Ophthalmol Vis Sci; 1998 May; 39(6):922-36. PubMed ID: 9579472 [TBL] [Abstract][Full Text] [Related]
4. Quantitative measurement of acute corneal injury in rabbits with surfactants of different type and irritancy. Maurer JK; Parker RD; Petroll WM; Carr GJ; Cavanagh HD; Jester JV Toxicol Appl Pharmacol; 1999 Jul; 158(1):61-70. PubMed ID: 10387933 [TBL] [Abstract][Full Text] [Related]
5. Application of in vivo confocal microscopy to the understanding of surfactant-induced ocular irritation. Jester JV; Maurer JK; Petroll WM; Wilkie DA; Parker RD; Cavanagh HD Toxicol Pathol; 1996; 24(4):412-28. PubMed ID: 8864183 [TBL] [Abstract][Full Text] [Related]
6. Ocular irritation: microscopic changes occurring over time in the rat with surfactants of known irritancy. Maurer JK; Parker RD; Carr GJ Toxicol Pathol; 1998; 26(2):217-25. PubMed ID: 9547859 [TBL] [Abstract][Full Text] [Related]
7. Pathology of ocular irritation with bleaching agents in the rabbit low-volume eye test. Maurer JK; Molai A; Parker RD; Li L; Carr GJ; Petroll WM; Cavanagh HD; Jester JV Toxicol Pathol; 2001; 29(3):308-19. PubMed ID: 11442017 [TBL] [Abstract][Full Text] [Related]
8. Extent of corneal injury as a biomarker for hazard assessment and the development of alternative models to the Draize rabbit eye test. Jester JV Cutan Ocul Toxicol; 2006; 25(1):41-54. PubMed ID: 16702053 [TBL] [Abstract][Full Text] [Related]
9. Light microscopic comparison of surfactant-induced eye irritation in rabbits and rats at three hours and recovery/day 35. Maurer JK; Parker RD Toxicol Pathol; 1996; 24(4):403-11. PubMed ID: 8864182 [TBL] [Abstract][Full Text] [Related]
10. Quantitative characterization of acid- and alkali-induced corneal injury in the low-volume eye test. Jester JV; Molai A; Petroll WM; Parker RD; Carr GJ; Cavanagh HD; Maurer JK Toxicol Pathol; 2000; 28(5):668-78. PubMed ID: 11026602 [TBL] [Abstract][Full Text] [Related]
11. Pathology of ocular irritation with acetone, cyclohexanol, parafluoroaniline, and formaldehyde in the rabbit low-volume eye test. Maurer JK; Molai A; Parker RD; Li LI; Carr GJ; Petroll WM; Cavanagh HD; Jester JV Toxicol Pathol; 2001; 29(2):187-99. PubMed ID: 11421486 [TBL] [Abstract][Full Text] [Related]
12. Extent of initial corneal injury as a basis for alternative eye irritation tests. Jester JV; Li L; Molai A; Maurer JK Toxicol In Vitro; 2001 Apr; 15(2):115-30. PubMed ID: 11287171 [TBL] [Abstract][Full Text] [Related]
13. Neutralizing antibody to TGFbeta modulates stromal fibrosis but not regression of photoablative effect following PRK. Møller-Pedersen T; Cavanagh HD; Petroll WM; Jester JV Curr Eye Res; 1998 Jul; 17(7):736-47. PubMed ID: 9678420 [TBL] [Abstract][Full Text] [Related]
14. Confocal microscopic characterization of wound repair after photorefractive keratectomy. Møller-Pedersen T; Li HF; Petroll WM; Cavanagh HD; Jester JV Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):487-501. PubMed ID: 9501858 [TBL] [Abstract][Full Text] [Related]
15. A rapid cell culture technique for assessing the toxicity of detergent-based products in vitro as a possible screen for eye irritancy in vivo. Kemp RB; Meredith RW; Gamble S; Frost M Cytobios; 1983; 36(143-44):153-9. PubMed ID: 6851660 [TBL] [Abstract][Full Text] [Related]
16. New tools for the evaluation of toxic ocular surface changes in the rat. Pauly A; Brignole-Baudouin F; Labbé A; Liang H; Warnet JM; Baudouin C Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5473-83. PubMed ID: 18055795 [TBL] [Abstract][Full Text] [Related]
17. Prediction of eye irritation potential of surfactant-based rinse-off personal care formulations by the bovine corneal opacity and permeability (BCOP) assay. Cater KC; Harbell JW Cutan Ocul Toxicol; 2006; 25(3):217-33. PubMed ID: 16980247 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation. Kruszewski FH; Walker TL; DiPasquale LC Fundam Appl Toxicol; 1997 Apr; 36(2):130-40. PubMed ID: 9143482 [TBL] [Abstract][Full Text] [Related]
19. In vitro methods: their relevance and complementarity in ocular safety assessment. Rougier A; Cottin M; de Silva O; Roguet R; Catroux P; Toufic A; Dossou KG Lens Eye Toxic Res; 1992; 9(3-4):229-45. PubMed ID: 1301783 [TBL] [Abstract][Full Text] [Related]
20. Ocular irritation: pathological changes occurring in the rat with surfactants of unknown irritancy. Maurer JK; Parker RD; Carr GJ Toxicol Pathol; 1998; 26(2):226-33. PubMed ID: 9547860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]