BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 9144568)

  • 21. Processing of the intron-encoded U18 small nucleolar RNA in the yeast Saccharomyces cerevisiae relies on both exo- and endonucleolytic activities.
    Villa T; Ceradini F; Presutti C; Bozzoni I
    Mol Cell Biol; 1998 Jun; 18(6):3376-83. PubMed ID: 9584178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a novel mRNA-associated protein in oocytes of Pleurodeles waltl and Xenopus laevis.
    Lieb B; Carl M; Hock R; Gebauer D; Scheer U
    Exp Cell Res; 1998 Dec; 245(2):272-81. PubMed ID: 9851867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA.
    Vincenti S; De Chiara V; Bozzoni I; Presutti C
    RNA; 2007 Jan; 13(1):138-50. PubMed ID: 17135484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intronic U14 snoRNAs of Xenopus laevis are located in two different parent genes and can be processed from their introns during early oogenesis.
    Xia L; Liu J; Sage C; Trexler EB; Andrews MT; Maxwell ES
    Nucleic Acids Res; 1995 Dec; 23(23):4844-9. PubMed ID: 8532527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo assembly of functional U7 snRNP requires RNA backbone flexibility within the Sm-binding site.
    Kolev NG; Steitz JA
    Nat Struct Mol Biol; 2006 Apr; 13(4):347-53. PubMed ID: 16547514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maintenance of nucleolar machineries and pre-rRNAs in remnant nucleolus of erythrocyte nuclei and remodeling in Xenopus egg extracts.
    Verheggen C; Le Panse S; Almouzni G; Hernandez-Verdun D
    Exp Cell Res; 2001 Sep; 269(1):23-34. PubMed ID: 11525636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fibrillarin binds directly and specifically to U16 box C/D snoRNA.
    Fatica A; Galardi S; Altieri F; Bozzoni I
    RNA; 2000 Jan; 6(1):88-95. PubMed ID: 10668801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Human ribosomal protein S13 inhibits splicing of the own pre-mRNA].
    Parakhnevich NM; Ivanov AV; Malygin AA; Karpova GG
    Mol Biol (Mosk); 2007; 41(1):51-8. PubMed ID: 17380891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel trypanosomatid small nucleolar RNAs that guide methylation: their genome organization, expression and potential use to direct specific methylation on target RNA molecules.
    Xu YX; Liu L; Michaeli S
    Isr Med Assoc J; 2000 Jul; 2 Suppl():58-62. PubMed ID: 10909419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of Saccharomyces cerevisiae Nop17p, a novel Nop58p-interacting protein that is involved in Pre-rRNA processing.
    Gonzales FA; Zanchin NI; Luz JS; Oliveira CC
    J Mol Biol; 2005 Feb; 346(2):437-55. PubMed ID: 15670595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of pre-rRNA base pairing and 80S complex formation in subnucleolar localization of the U3 snoRNP.
    Granneman S; Vogelzangs J; Lührmann R; van Venrooij WJ; Pruijn GJ; Watkins NJ
    Mol Cell Biol; 2004 Oct; 24(19):8600-10. PubMed ID: 15367679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing.
    Hirose T; Ideue T; Nagai M; Hagiwara M; Shu MD; Steitz JA
    Mol Cell; 2006 Sep; 23(5):673-84. PubMed ID: 16949364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterogeneous nuclear ribonucleoprotein complexes from Xenopus laevis oocytes and somatic cells.
    Marcu A; Bassit B; Perez R; Piñol-Roma S
    Int J Dev Biol; 2001 Sep; 45(5-6):743-52. PubMed ID: 11669376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribonuclease "XlaI," an activity from Xenopus laevis oocytes that excises intervening sequences from yeast transfer ribonucleic acid precursors.
    Otsuka A; de Paolis A; Tocchini-Valentini GP
    Mol Cell Biol; 1981 Mar; 1(3):269-80. PubMed ID: 6765601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nuclear processing of the 3'-terminal nucleotides of pre-U1 RNA in Xenopus laevis oocytes.
    Yang H; Moss ML; Lund E; Dahlberg JE
    Mol Cell Biol; 1992 Apr; 12(4):1553-60. PubMed ID: 1549111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystals of X29, a Xenopus laevis U8 snoRNA-binding protein with nuclear decapping activity.
    Peculis BA; Scarsdale JN; Wright HT
    Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1668-9. PubMed ID: 15333950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional characterization of XendoU, the endoribonuclease involved in small nucleolar RNA biosynthesis.
    Gioia U; Laneve P; Dlakic M; Arceci M; Bozzoni I; Caffarelli E
    J Biol Chem; 2005 May; 280(19):18996-9002. PubMed ID: 15755742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The accumulation of mature RNA for the Xenopus laevis ribosomal protein L1 is controlled at the level of splicing and turnover of the precursor RNA.
    Caffarelli E; Fragapane P; Gehring C; Bozzoni I
    EMBO J; 1987 Nov; 6(11):3493-8. PubMed ID: 2448138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron-impact ionization cross-section measurements for U10+, U13+, and U16+.
    Gregory DC; Huq MS; Meyer FW; Swenson DR; Sataka M; Chantrenne S
    Phys Rev A; 1990 Jan; 41(1):106-115. PubMed ID: 9902848
    [No Abstract]   [Full Text] [Related]  

  • 40. Corrigendum: In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA.
    Parizotto EA; Dunoyer P; Rahm N; Himber C; Voinnet O
    Genes Dev; 2015 Feb; 29(4):465. PubMed ID: 25691472
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.