These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9144720)

  • 1. Sequence alignments of the H(+)-dependent oligopeptide transporter family PTR: inferences on structure and function of the intestinal PET1 transporter.
    Graul RC; Sadée W
    Pharm Res; 1997 Apr; 14(4):388-400. PubMed ID: 9144720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoration of high-level transport activity by human reduced folate carrier/ThTr1 thiamine transporter chimaeras: role of the transmembrane domain 6/7 linker region in reduced folate carrier function.
    Liu XY; Witt TL; Matherly LH
    Biochem J; 2003 Jan; 369(Pt 1):31-7. PubMed ID: 12227830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity of nickel/cobalt permeases: insights from mutants altered in transmembrane domains I and II.
    Degen O; Eitinger T
    J Bacteriol; 2002 Jul; 184(13):3569-77. PubMed ID: 12057951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily.
    Xiong J; Feng J; Yuan D; Zhou J; Miao W
    Sci Rep; 2015 Nov; 5():16724. PubMed ID: 26577702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters.
    Newstead S
    Biochim Biophys Acta; 2015 Mar; 1850(3):488-99. PubMed ID: 24859687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane topology of the Escherichia coli gamma-aminobutyrate transporter: implications on the topography and mechanism of prokaryotic and eukaryotic transporters from the APC superfamily.
    Hu LA; King SC
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):69-76. PubMed ID: 9806886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of transporter family from protein sequence by support vector machine approach.
    Lin HH; Han LY; Cai CZ; Ji ZL; Chen YZ
    Proteins; 2006 Jan; 62(1):218-31. PubMed ID: 16287089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The PTR family: a new group of peptide transporters.
    Steiner HY; Naider F; Becker JM
    Mol Microbiol; 1995 Jun; 16(5):825-34. PubMed ID: 7476181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using CLUSTAL for multiple sequence alignments.
    Higgins DG; Thompson JD; Gibson TJ
    Methods Enzymol; 1996; 266():383-402. PubMed ID: 8743695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the gram-positive Streptococcus pneumoniae.
    Alloing G; de Philip P; Claverys JP
    J Mol Biol; 1994 Aug; 241(1):44-58. PubMed ID: 8051706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The opt1 gene of Drosophila melanogaster encodes a proton-dependent dipeptide transporter.
    Roman G; Meller V; Wu KH; Davis RL
    Am J Physiol; 1998 Sep; 275(3):C857-69. PubMed ID: 9730971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins.
    Dobrowolski A; Lolkema JS
    Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global functions of extracellular, transmembrane and cytoplasmic domains of organic solute transporter β-subunit.
    Christian WV; Hinkle PM
    Biochem J; 2017 May; 474(12):1981-1992. PubMed ID: 28455390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose-6-phosphate transporter and receptor functions of the glucose 6-phosphatase system analyzed from a consensus defined by multiple alignments.
    Méchin MC; van de Werve G
    Proteins; 2000 Nov; 41(2):164-72. PubMed ID: 10966570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis.
    Sophianopoulou V; Diallinas G
    FEMS Microbiol Rev; 1995 Jan; 16(1):53-75. PubMed ID: 7888172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps.
    Johnson JM; Church GM
    J Mol Biol; 1999 Apr; 287(3):695-715. PubMed ID: 10092468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.
    Kasho VN; Smirnova IN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1060-70. PubMed ID: 16574153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae.
    Hauser M; Narita V; Donhardt AM; Naider F; Becker JM
    Mol Membr Biol; 2001; 18(1):105-12. PubMed ID: 11396605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interactions between arginine-133 and aspartate-88 in the human reduced folate carrier: evidence for a charge-pair association.
    Liu XY; Matherly LH
    Biochem J; 2001 Sep; 358(Pt 2):511-6. PubMed ID: 11513752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.