These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9144723)

  • 1. Molecular mobility of supercooled amorphous indomethacin, determined by dynamic mechanical analysis.
    Andronis V; Zografi G
    Pharm Res; 1997 Apr; 14(4):410-4. PubMed ID: 9144723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity.
    Andronis V; Zografi G
    Pharm Res; 1998 Jun; 15(6):835-42. PubMed ID: 9647347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the viscosity of an amorphous drug using thermomechanical analysis (TMA).
    Hancock BC; Dupuis Y; Thibert R
    Pharm Res; 1999 May; 16(5):672-5. PubMed ID: 10350009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature.
    Yoshioka M; Hancock BC; Zografi G
    J Pharm Sci; 1994 Dec; 83(12):1700-5. PubMed ID: 7891297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures.
    Hancock BC; Shamblin SL; Zografi G
    Pharm Res; 1995 Jun; 12(6):799-806. PubMed ID: 7667182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictions of onset of crystallization from experimental relaxation times I-correlation of molecular mobility from temperatures above the glass transition to temperatures below the glass transition.
    Bhugra C; Shmeis R; Krill SL; Pikal MJ
    Pharm Res; 2006 Oct; 23(10):2277-90. PubMed ID: 16933094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependence of molecular mobility during structural relaxation and its impact on organic amorphous solids: an investigation based on a calorimetric approach.
    Mao C; Chamarthy SP; Pinal R
    Pharm Res; 2006 Aug; 23(8):1906-17. PubMed ID: 16858653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state characteristics of amorphous sodium indomethacin relative to its free acid.
    Tong P; Zografi G
    Pharm Res; 1999 Aug; 16(8):1186-92. PubMed ID: 10468018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of a dynamical crossover in the shear relaxation processes in supercooled selenium near the glass transition.
    Zhu W; Aitken BG; Sen S
    J Chem Phys; 2019 Mar; 150(9):094502. PubMed ID: 30849882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric evidence for two distinct molecular packing arrangements in stable glasses of indomethacin.
    Kearns KL; Swallen SF; Ediger MD; Sun Y; Yu L
    J Phys Chem B; 2009 Feb; 113(6):1579-86. PubMed ID: 19154147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling.
    Lim AW; Löbmann K; Grohganz H; Rades T; Chieng N
    J Pharm Pharmacol; 2016 Jan; 68(1):36-45. PubMed ID: 26663364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First- and third-order shear nonlinearities across the structural relaxation peak of the deeply supercooled pharmaceutical liquid indomethacin.
    Moch K; Bierwirth SP; Gainaru C; Böhmer R
    J Chem Phys; 2021 Oct; 155(13):134901. PubMed ID: 34624979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of molecular mobility in the glassy state between amorphous indomethacin and salicin based on spin-lattice relaxation times.
    Masuda K; Tabata S; Sakata Y; Hayase T; Yonemochi E; Terada K
    Pharm Res; 2005 May; 22(5):797-805. PubMed ID: 15906176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between molecular mobility and physical stability of amorphous itraconazole.
    Bhardwaj SP; Arora KK; Kwong E; Templeton A; Clas SD; Suryanarayanan R
    Mol Pharm; 2013 Feb; 10(2):694-700. PubMed ID: 23198856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The formation and physical stability of two-phase solid dispersion systems of indomethacin in supercooled molten mixtures with different matrix formers.
    Semjonov K; Kogermann K; Laidmäe I; Antikainen O; Strachan CJ; Ehlers H; Yliruusi J; Heinämäki J
    Eur J Pharm Sci; 2017 Jan; 97():237-246. PubMed ID: 27890595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of physical aging on nucleation of amorphous indomethacin.
    Vyazovkin S; Dranca I
    J Phys Chem B; 2007 Jun; 111(25):7283-7. PubMed ID: 17530880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance.
    Alie J; Menegotto J; Cardon P; Duplaa H; Caron A; Lacabanne C; Bauer M
    J Pharm Sci; 2004 Jan; 93(1):218-33. PubMed ID: 14648651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow dynamics of supercooled m-toluidine investigated by mechanical spectroscopy.
    Mandanici A; Shi X; McKenna GB; Cutroni M
    J Chem Phys; 2005 Mar; 122(11):114501. PubMed ID: 15836223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y; Aguilar G; Lavernia EJ; Wong BJ
    Lasers Surg Med; 2003; 32(4):271-8. PubMed ID: 12696094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.