BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9144773)

  • 1. Solvation effects are responsible for the reduced inhibitor affinity of some HIV-1 PR mutants.
    Sussman F; Villaverde MC; Davis A
    Protein Sci; 1997 May; 6(5):1024-30. PubMed ID: 9144773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
    Kar P; Lipowsky R; Knecht V
    J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance.
    Hong L; Zhang XC; Hartsuck JA; Tang J
    Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease.
    Chellappan S; Kairys V; Fernandes MX; Schiffer C; Gilson MK
    Proteins; 2007 Aug; 68(2):561-7. PubMed ID: 17474129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpreting trends in the binding of cyclic ureas to HIV-1 protease.
    Mardis KL; Luo R; Gilson MK
    J Mol Biol; 2001 Jun; 309(2):507-17. PubMed ID: 11371168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies.
    Meher BR; Wang Y
    J Phys Chem B; 2012 Feb; 116(6):1884-900. PubMed ID: 22239286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism.
    Meher BR; Wang Y
    J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D; Liu MS; Ji B; Hwang K; Huang Y
    J Chem Phys; 2009 Jun; 130(21):215102. PubMed ID: 19508101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations.
    Ohtaka H; Schön A; Freire E
    Biochemistry; 2003 Nov; 42(46):13659-66. PubMed ID: 14622012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease.
    Ohtaka H; Velázquez-Campoy A; Xie D; Freire E
    Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study.
    Maphumulo SI; Halder AK; Govender T; Maseko S; Maguire GEM; Honarparvar B; Kruger HG
    Chem Biol Drug Des; 2018 Nov; 92(5):1899-1913. PubMed ID: 30003668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. I36T↑T mutation in South African subtype C (C-SA) HIV-1 protease significantly alters protease-drug interactions.
    Maseko SB; Padayachee E; Govender T; Sayed Y; Kruger G; Maguire GEM; Lin J
    Biol Chem; 2017 Sep; 398(10):1109-1117. PubMed ID: 28525359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272.
    Wang YX; Freedberg DI; Yamazaki T; Wingfield PT; Stahl SJ; Kaufman JD; Kiso Y; Torchia DA
    Biochemistry; 1996 Aug; 35(31):9945-50. PubMed ID: 8756455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site.
    Mahalingam B; Wang YF; Boross PI; Tozser J; Louis JM; Harrison RW; Weber IT
    Eur J Biochem; 2004 Apr; 271(8):1516-24. PubMed ID: 15066177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir.
    Chen X; Weber IT; Harrison RW
    J Mol Model; 2004 Dec; 10(5-6):373-81. PubMed ID: 15597206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual inhibitors for aspartic proteases HIV-1 PR and renin: advancements in AIDS-hypertension-diabetes linkage via molecular dynamics, inhibition assays, and binding free energy calculations.
    Tzoupis H; Leonis G; Megariotis G; Supuran CT; Mavromoustakos T; Papadopoulos MG
    J Med Chem; 2012 Jun; 55(12):5784-96. PubMed ID: 22621689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance.
    Alcaro S; Artese A; Ceccherini-Silberstein F; Ortuso F; Perno CF; Sing T; Svicher V
    J Chem Inf Model; 2009 Jul; 49(7):1751-61. PubMed ID: 19537723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.