These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 9144788)

  • 1. NADP-dependent enzymes. II: Evolution of the mono- and dinucleotide binding domains.
    Carugo O; Argos P
    Proteins; 1997 May; 28(1):29-40. PubMed ID: 9144788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding.
    Carugo O; Argos P
    Proteins; 1997 May; 28(1):10-28. PubMed ID: 9144787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD-binding domains of dehydrogenases.
    Lesk AM
    Curr Opin Struct Biol; 1995 Dec; 5(6):775-83. PubMed ID: 8749365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: a comparison with NAD bound to the oxidoreductase enzymes.
    Bell CE; Yeates TO; Eisenberg D
    Protein Sci; 1997 Oct; 6(10):2084-96. PubMed ID: 9336832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A path from primary protein sequence to ligand recognition.
    Kho R; Baker BL; Newman JV; Jack RM; Sem DS; Villar HO; Hansen MR
    Proteins; 2003 Mar; 50(4):589-99. PubMed ID: 12577265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure--function studies on the iron-sulfur flavoenzyme glutamate synthase: an unexpectedly complex self-regulated enzyme.
    Vanoni MA; Curti B
    Arch Biochem Biophys; 2005 Jan; 433(1):193-211. PubMed ID: 15581577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rehab of NAD(P)-dependent enzymes with NAD(P)-based inhibitors.
    Felczak K; Pankiewicz KW
    Curr Med Chem; 2011; 18(13):1891-908. PubMed ID: 21517781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structurally conserved water molecule in Rossmann dinucleotide-binding domains.
    Bottoms CA; Smith PE; Tanner JJ
    Protein Sci; 2002 Sep; 11(9):2125-37. PubMed ID: 12192068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation by nicotinamide adenine dinucleotide of sympathetic and sensory-motor neurotransmission via P1-purinoceptors in the rat mesenteric arterial bed.
    Ralevic V
    Br J Pharmacol; 1995 Apr; 114(8):1541-8. PubMed ID: 7599921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant.
    Mittl PR; Berry A; Scrutton NS; Perham RN; Schulz GE
    J Mol Biol; 1993 May; 231(2):191-5. PubMed ID: 8510142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P.
    Tanner JJ; Tu SC; Barbour LJ; Barnes CL; Krause KL
    Protein Sci; 1999 Sep; 8(9):1725-32. PubMed ID: 10493573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution studies of hydride transfer in the ferredoxin:NADP
    Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA
    FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking distinct conformations of nicotinamide adenine dinucleotide with protein fold/function.
    Kuppuraj G; Sargsyan K; Hua YH; Merrill AR; Lim C
    J Phys Chem B; 2011 Jun; 115(24):7932-9. PubMed ID: 21612228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP.
    Kingston RL; Scopes RK; Baker EN
    Structure; 1996 Dec; 4(12):1413-28. PubMed ID: 8994968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a biliverdin IXalpha reductase enzyme-cofactor complex.
    Whitby FG; Phillips JD; Hill CP; McCoubrey W; Maines MD
    J Mol Biol; 2002 Jun; 319(5):1199-210. PubMed ID: 12079357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selectivity in the binding of NAD(P)+ analogues to NAD- and NADP-dependent pig heart isocitrate dehydrogenases. A nuclear magnetic resonance study.
    Ehrlich RS; Colman RF
    Biochemistry; 1992 Dec; 31(49):12524-31. PubMed ID: 1463739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases.
    Lee BI; Chang C; Cho SJ; Eom SH; Kim KK; Yu YG; Suh SW
    J Mol Biol; 2001 Apr; 307(5):1351-62. PubMed ID: 11292347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation.
    Milani M; Ciriello F; Baroni S; Pandini V; Canevari G; Bolognesi M; Aliverti A
    J Mol Biol; 2011 Aug; 411(2):463-73. PubMed ID: 21699903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes.
    Cahn JK; Baumschlager A; Brinkmann-Chen S; Arnold FH
    Protein Eng Des Sel; 2016 Jan; 29(1):31-8. PubMed ID: 26512129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.