These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9144797)
1. Structural basis for thermostability and identification of potential active site residues for adenylate kinases from the archaeal genus Methanococcus. Haney P; Konisky J; Koretke KK; Luthey-Schulten Z; Wolynes PG Proteins; 1997 May; 28(1):117-30. PubMed ID: 9144797 [TBL] [Abstract][Full Text] [Related]
2. Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. Criswell AR; Bae E; Stec B; Konisky J; Phillips GN J Mol Biol; 2003 Jul; 330(5):1087-99. PubMed ID: 12860130 [TBL] [Abstract][Full Text] [Related]
3. Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus. Haney PJ; Stees M; Konisky J J Biol Chem; 1999 Oct; 274(40):28453-8. PubMed ID: 10497207 [TBL] [Abstract][Full Text] [Related]
4. The adenylate kinase genes of M. voltae, M. thermolithotrophicus, M. jannaschii, and M. igneus define a new family of adenylate kinases. Ferber DM; Haney PJ; Berk H; Lynn D; Konisky J Gene; 1997 Feb; 185(2):239-44. PubMed ID: 9055821 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of a trimeric archaeal adenylate kinase from the mesophile Methanococcus maripaludis with an unusually broad functional range and thermal stability. Davlieva M; Shamoo Y Proteins; 2010 Feb; 78(2):357-64. PubMed ID: 19731371 [TBL] [Abstract][Full Text] [Related]
6. Pressure stabilization is not a general property of thermophilic enzymes: the adenylate kinases of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii. Konisky J; Michels PC; Clark DS Appl Environ Microbiol; 1995 Jul; 61(7):2762-4. PubMed ID: 7618889 [TBL] [Abstract][Full Text] [Related]
7. The adenylate kinases from a mesophilic and three thermophilic methanogenic members of the Archaea. Rusnak P; Haney P; Konisky J J Bacteriol; 1995 Jun; 177(11):2977-81. PubMed ID: 7768791 [TBL] [Abstract][Full Text] [Related]
8. The structure of a trimeric archaeal adenylate kinase. Vonrhein C; Bönisch H; Schäfer G; Schulz GE J Mol Biol; 1998 Sep; 282(1):167-79. PubMed ID: 9733648 [TBL] [Abstract][Full Text] [Related]
9. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases. Moon S; Bannen RM; Rutkoski TJ; Phillips GN; Bae E Proteins; 2014 Oct; 82(10):2631-42. PubMed ID: 24931334 [TBL] [Abstract][Full Text] [Related]
10. A new branch in the family: structure of aspartate-beta-semialdehyde dehydrogenase from Methanococcus jannaschii. Faehnle CR; Ohren JF; Viola RE J Mol Biol; 2005 Nov; 353(5):1055-68. PubMed ID: 16225889 [TBL] [Abstract][Full Text] [Related]
11. Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms. Gruber T; Köhrer C; Lung B; Shcherbakov D; Piendl W FEBS Lett; 2003 Aug; 549(1-3):123-8. PubMed ID: 12914937 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the catalytic trimer of Methanococcus jannaschii aspartate transcarbamoylase. Vitali J; Colaneri MJ; Kantrowitz E Proteins; 2008 May; 71(3):1324-34. PubMed ID: 18058907 [TBL] [Abstract][Full Text] [Related]
13. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Koonin EV; Mushegian AR; Galperin MY; Walker DR Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893 [TBL] [Abstract][Full Text] [Related]
14. Environment specific substitution tables for thermophilic proteins. Mizuguchi K; Sele M; Cubellis MV BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S15. PubMed ID: 17430559 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of a DNA binding protein from the hyperthermophilic euryarchaeon Methanococcus jannaschii. Wang G; Guo R; Bartlam M; Yang H; Xue H; Liu Y; Huang L; Rao Z Protein Sci; 2003 Dec; 12(12):2815-22. PubMed ID: 14627741 [TBL] [Abstract][Full Text] [Related]
16. Detailed analysis of RNA-protein interactions within the ribosomal protein S8-rRNA complex from the archaeon Methanococcus jannaschii. Tishchenko S; Nikulin A; Fomenkova N; Nevskaya N; Nikonov O; Dumas P; Moine H; Ehresmann B; Ehresmann C; Piendl W; Lamzin V; Garber M; Nikonov S J Mol Biol; 2001 Aug; 311(2):311-24. PubMed ID: 11478863 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of a DNA primase from the hyperthermophilic archaeon Methanococcus jannaschii. Desogus G; Onesti S; Brick P; Rossi M; Pisani FM Nucleic Acids Res; 1999 Nov; 27(22):4444-50. PubMed ID: 10536154 [TBL] [Abstract][Full Text] [Related]
18. Pressure stabilization of proteins from extreme thermophiles. Hei DJ; Clark DS Appl Environ Microbiol; 1994 Mar; 60(3):932-9. PubMed ID: 16349220 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5. Goto-Ito S; Ito T; Ishii R; Muto Y; Bessho Y; Yokoyama S Proteins; 2008 Sep; 72(4):1274-89. PubMed ID: 18384044 [TBL] [Abstract][Full Text] [Related]
20. Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins. Thomas NA; Jarrell KF J Bacteriol; 2001 Dec; 183(24):7154-64. PubMed ID: 11717274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]