These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9144797)
61. Crystal structure and evolution of a transfer RNA splicing enzyme. Li H; Trotta CR; Abelson J Science; 1998 Apr; 280(5361):279-84. PubMed ID: 9535656 [TBL] [Abstract][Full Text] [Related]
62. Identifying and engineering ion pairs in adenylate kinases. Insights from molecular dynamics simulations of thermophilic and mesophilic homologues. Bae E; Phillips GN J Biol Chem; 2005 Sep; 280(35):30943-8. PubMed ID: 15995248 [TBL] [Abstract][Full Text] [Related]
63. Structure of ribosomal protein L1 from Methanococcus thermolithotrophicus. Functionally important structural invariants on the L1 surface. Nevskaya N; Tishchenko S; Paveliev M; Smolinskaya Y; Fedorov R; Piendl W; Nakamura Y; Toyoda T; Garber M; Nikonov S Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):1023-9. PubMed ID: 12037305 [TBL] [Abstract][Full Text] [Related]
64. Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae. Bardy SL; Ng SY; Carnegie DS; Jarrell KF J Bacteriol; 2005 Feb; 187(3):1188-91. PubMed ID: 15659694 [TBL] [Abstract][Full Text] [Related]
65. Crystal structure at 2.3 A resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from Thermonanaerobacterium thermosulfurigenes EM1. Knegtel RM; Wind RD; Rozeboom HJ; Kalk KH; Buitelaar RM; Dijkhuizen L; Dijkstra BW J Mol Biol; 1996 Mar; 256(3):611-22. PubMed ID: 8604143 [TBL] [Abstract][Full Text] [Related]
66. Promoter recognition in archaea is mediated by transcription factors: identification of transcription factor aTFB from Methanococcus thermolithotrophicus as archaeal TATA-binding protein. Gohl HP; Gröndahl B; Thomm M Nucleic Acids Res; 1995 Oct; 23(19):3837-41. PubMed ID: 7479025 [TBL] [Abstract][Full Text] [Related]
67. Homology modelling of two subtilisin-like proteases from the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus stetteri. Voorhorst WG; Warner A; de Vos WM; Siezen RJ Protein Eng; 1997 Aug; 10(8):905-14. PubMed ID: 9415440 [TBL] [Abstract][Full Text] [Related]
68. Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges. Panja AS; Bandopadhyay B; Maiti S PLoS One; 2015; 10(7):e0131495. PubMed ID: 26177372 [TBL] [Abstract][Full Text] [Related]
69. Crystal structure of the antitoxin-toxin protein complex RelB-RelE from Methanococcus jannaschii. Francuski D; Saenger W J Mol Biol; 2009 Nov; 393(4):898-908. PubMed ID: 19712680 [TBL] [Abstract][Full Text] [Related]
70. Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus. Hess D; Krüger K; Knappik A; Palm P; Hensel R Eur J Biochem; 1995 Oct; 233(1):227-37. PubMed ID: 7588750 [TBL] [Abstract][Full Text] [Related]
71. MJ0109 is an enzyme that is both an inositol monophosphatase and the 'missing' archaeal fructose-1,6-bisphosphatase. Stec B; Yang H; Johnson KA; Chen L; Roberts MF Nat Struct Biol; 2000 Nov; 7(11):1046-50. PubMed ID: 11062561 [TBL] [Abstract][Full Text] [Related]
72. Molecular characterization of phosphoglycerate mutase in archaea. van der Oost J; Huynen MA; Verhees CH FEMS Microbiol Lett; 2002 Jun; 212(1):111-20. PubMed ID: 12076796 [TBL] [Abstract][Full Text] [Related]
73. A thermostable platform for transcriptional regulation: the DNA-binding properties of two Lrp homologs from the hyperthermophilic archaeon Methanococcus jannaschii. Ouhammouch M; Geiduschek EP EMBO J; 2001 Jan; 20(1-2):146-56. PubMed ID: 11226165 [TBL] [Abstract][Full Text] [Related]
74. Relationship between local structural entropy and protein thermostability. Chan CH; Liang HK; Hsiao NW; Ko MT; Lyu PC; Hwang JK Proteins; 2004 Dec; 57(4):684-91. PubMed ID: 15532068 [TBL] [Abstract][Full Text] [Related]
75. Molecular basis of the thermostability and thermophilicity of laminarinases: X-ray structure of the hyperthermostable laminarinase from Rhodothermus marinus and molecular dynamics simulations. Bleicher L; Prates ET; Gomes TC; Silveira RL; Nascimento AS; Rojas AL; Golubev A; Martínez L; Skaf MS; Polikarpov I J Phys Chem B; 2011 Jun; 115(24):7940-9. PubMed ID: 21619042 [TBL] [Abstract][Full Text] [Related]
76. Rational Design of Adenylate Kinase Thermostability through Coevolution and Sequence Divergence Analysis. Chang J; Zhang C; Cheng H; Tan YW Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33803409 [TBL] [Abstract][Full Text] [Related]
77. Thermotoga neapolitana adenylate kinase is highly active at 30 degrees C. Vieille C; Krishnamurthy H; Hyun HH; Savchenko A; Yan H; Zeikus JG Biochem J; 2003 Jun; 372(Pt 2):577-85. PubMed ID: 12625835 [TBL] [Abstract][Full Text] [Related]
78. Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Chakravarty S; Varadarajan R Biochemistry; 2002 Jun; 41(25):8152-61. PubMed ID: 12069608 [TBL] [Abstract][Full Text] [Related]
79. A stable archaeal pyruvate carboxylase from the hyperthermophile Methanococcus jannaschii. Mukhopadhyay B; Patel VJ; Wolfe RS Arch Microbiol; 2000 Dec; 174(6):406-14. PubMed ID: 11195096 [TBL] [Abstract][Full Text] [Related]
80. Overexpression, purification, and characterization of the thermostable mevalonate kinase from Methanococcus jannaschii. Huang KX; Scott AI; Bennett GN Protein Expr Purif; 1999 Oct; 17(1):33-40. PubMed ID: 10497066 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]