These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 914489)

  • 1. A new in vivo method of quantitating the rate of magnitude of mineralization of an experimental osseous defect.
    Hellewell AB; Beljan JR
    Invest Radiol; 1977; 12(5):467-73. PubMed ID: 914489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of a constant direct current on the repair of an experimental osseous defect.
    Hellewell AB; Beljan JR
    Clin Orthop Relat Res; 1979; (142):219-22. PubMed ID: 498639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of diethylstilbestrol on the rate of osseous repair, bone integrity, and plasma calcium in the adult avian.
    Hellewell AB; Beljan JR; Goldman M
    Calcif Tissue Res; 1975 Sep; 18(3):233-9. PubMed ID: 1182579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chronic administration of glucocorticoid (prednisolone) on the rate of healing of experimental osseous defects.
    Hellewell AB; Beljan JR; Goldman M
    Clin Orthop Relat Res; 1974 May; (100):349-55. PubMed ID: 4838419
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantitative roentgenographic densitometry for assessing fracture healing.
    Tiedeman JJ; Lippiello L; Connolly JF; Strates BS
    Clin Orthop Relat Res; 1990 Apr; (253):279-86. PubMed ID: 2317983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of calcium deficiency on healing of experimental fractures in the avian tarsus as determined by the fracture repair ratio.
    Beljan JR; Hellewell AB; Goldman M
    Clin Orthop Relat Res; 1971; 78():277-85. PubMed ID: 4999927
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of chronic heparin administration on the mineralization of an experimental osseous defect.
    Beljan JR; Hellewell AB
    Clin Orthop Relat Res; 1977 Jun; (125):205-7. PubMed ID: 880768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mineralization phenomena in the area of long bone fracture wound healing].
    Niedźwiedzki T; Pawlikowski M
    Chir Narzadow Ruchu Ortop Pol; 1990; 55(4-6):277-83. PubMed ID: 1369833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of bone union/nonunion in an experimental model using microcomputed technology.
    Schmidhammer R; Zandieh S; Mittermayr R; Pelinka LE; Leixnering M; Hopf R; Kroepfl A; Redl H
    J Trauma; 2006 Jul; 61(1):199-205. PubMed ID: 16832271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The mineralization of the regenerate and the hormonal regulation of bone formation during the treatment of a malunited diaphyseal fracture of the shin bones].
    Shevtsov VI; Sveshnikov AA; Borodaĭkevich RD; Ofitserova NV; Obanina NF
    Klin Khir (1962); 1994; (3):46-9. PubMed ID: 7637292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of age and mechanical stability on volume, microstructure, and mineralization of the fracture callus during bone healing: is osteoclast activity the key to age-related impaired healing?
    Mehta M; Strube P; Peters A; Perka C; Hutmacher D; Fratzl P; Duda GN
    Bone; 2010 Aug; 47(2):219-28. PubMed ID: 20510391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix.
    Chakkalakal DA; Mashoof AA; Novak J; Strates BS; McGuire MH
    J Biomed Mater Res; 1994 Dec; 28(12):1439-43. PubMed ID: 7876283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of vitamin D2 and fluoride on experimental bone fracture healing in rats.
    Steier A; Gedalia I; Schwarz A; Rodan A
    J Dent Res; 1967; 46(4):675-80. PubMed ID: 5298503
    [No Abstract]   [Full Text] [Related]  

  • 15. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone.
    Granke M; Makowski AJ; Uppuganti S; Nyman JS
    J Biomech; 2016 Sep; 49(13):2748-2755. PubMed ID: 27344202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEASUREMENT OF BONE MINERAL IN VIVO: AN IMPROVED METHOD.
    CAMERON JR; SORENSON J
    Science; 1963 Oct; 142(3589):230-2. PubMed ID: 14057368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bone mineralization density distribution as a fingerprint of the mineralization process.
    Ruffoni D; Fratzl P; Roschger P; Klaushofer K; Weinkamer R
    Bone; 2007 May; 40(5):1308-19. PubMed ID: 17337263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations between nanostructure and micromechanical properties of healing bone.
    Hoerth RM; Kerschnitzki M; Aido M; Schmidt I; Burghammer M; Duda GN; Fratzl P; Willie BM; Wagermaier W
    J Mech Behav Biomed Mater; 2018 Jan; 77():258-266. PubMed ID: 28957701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three children with lower limb fractures and a mineralization defect: a novel bone fragility disorder?
    Munns CF; Rauch F; Travers R; Glorieux FH
    Bone; 2004 Nov; 35(5):1023-8. PubMed ID: 15542026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relation of radionuclide uptake by bone to the rate of calcium mineralization. I: Experimental studies using 45Ca, 32P and 99Tcm-MDP.
    Budd RS; Hodgson GS; Hare WS
    Br J Radiol; 1989 Apr; 62(736):314-7. PubMed ID: 2713588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.