These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9144970)

  • 21. Thermoplastic vulcanizates based on waste truck tire rubber and copolyester blends reinforced with carbon black.
    Sripornsawat B; Saiwari S; Nakason C
    Waste Manag; 2018 Sep; 79():638-646. PubMed ID: 30343796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrolysis kinetics behavior of solid tire wastes available in Bangladesh.
    Islam MR; Haniu H; Fardoushi J
    Waste Manag; 2009 Feb; 29(2):668-77. PubMed ID: 18585909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of latex and of natural rubber by Streptomyces strain La 7.
    Gallert C
    Syst Appl Microbiol; 2000 Oct; 23(3):433-41. PubMed ID: 11108024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomarker responses and chemical analyses in fish indicate leakage of polycyclic aromatic hydrocarbons and other compounds from car tire rubber.
    Stephensen E; Adolfsson-Erici M; Celander M; Hulander M; Parkkonen J; Hegelund T; Sturve J; Hasselberg L; Bengtsson M; Förlin L
    Environ Toxicol Chem; 2003 Dec; 22(12):2926-31. PubMed ID: 14713032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of the Diamine Chain End Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of Carbon-Black-Filled Rubber Compounds.
    Song S; Yeom G; Kim D; Ryu G; Hwang K; Ahn B; Choi H; Paik HJ; Chung S; Kim W
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of polyisoprene rubber by newly isolated Bacillus sp. AF-666 from soil.
    Shah AA; Hasan F; Shah Z; Mutiullah ; Hameed A
    Prikl Biokhim Mikrobiol; 2012; 48(1):45-50. PubMed ID: 22567884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rubber tire leachates in the aquatic environment.
    Evans JJ
    Rev Environ Contam Toxicol; 1997; 151():67-115. PubMed ID: 9216257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial degradation of natural and synthetic rubber.
    Bode HB; Kerkhoff K; Jendrossek D
    Biomacromolecules; 2001; 2(1):295-303. PubMed ID: 11749186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Latex allergens in tire dust and airborne particles.
    Miguel AG; Cass GR; Weiss J; Glovsky MM
    Environ Health Perspect; 1996 Nov; 104(11):1180-6. PubMed ID: 8959407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation.
    Rose K; Tenberge KB; Steinbüchel A
    Biomacromolecules; 2005; 6(1):180-8. PubMed ID: 15638519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tire traces - discrimination and classification of pyrolysis-GC/MS profiles.
    Gueissaz L; Massonnet G
    Forensic Sci Int; 2013 Jul; 230(1-3):46-57. PubMed ID: 23121890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial gutta-percha degradation shares common steps with rubber degradation by Nocardia nova SH22a.
    Luo Q; Hiessl S; Poehlein A; Steinbüchel A
    Appl Environ Microbiol; 2013 Feb; 79(4):1140-9. PubMed ID: 23220954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and Application of Silica Supported Calix[4]arene Derivative as a New Processing Aid Agent for Reducing Hysteresis of Tread Rubber Compounds Used in Low Rolling Resistance Tires.
    Sadat-Mansouri SN; Hamrahjou N; Taghvaei-Ganjali S; Zadmard R
    Acta Chim Slov; 2022 Mar; 69(1):98-107. PubMed ID: 35298019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Car and truck tire wear particles in complex environmental samples - A quantitative comparison with "traditional" microplastic polymer mass loads.
    Goßmann I; Halbach M; Scholz-Böttcher BM
    Sci Total Environ; 2021 Jun; 773():145667. PubMed ID: 33940753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implications of the Use of Silica as Active Filler in Passenger Car Tire Compounds on Their Recycling Options.
    van Hoek JW; Heideman G; Noordermeer JWM; Dierkes WK; Blume A
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30832290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands.
    Li LH; Chen YJ; Ferreira PMV; Liu Y; Xiao HL
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporating the recovered carbon black produced in an industrial-scale waste tire pyrolysis plant into a natural rubber formulation.
    Urrego-Yepes W; Cardona-Uribe N; Vargas-Isaza CA; Martínez JD
    J Environ Manage; 2021 Jun; 287():112292. PubMed ID: 33690014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tire waste management system in Cyprus in the framework of circular economy strategy.
    Symeonides D; Loizia P; Zorpas AA
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35445-35460. PubMed ID: 31127515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vegetable derived-oil facilitating carbon black migration from waste tire rubbers and its reinforcement effect.
    Song P; Wan C; Xie Y; Formela K; Wang S
    Waste Manag; 2018 Aug; 78():238-248. PubMed ID: 32559909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tire Ground Rubber Biodegradation by a Consortium Isolated from an Aged Tire.
    Castañeda Alejo SM; Tejada Meza K; Valderrama Valencia MR; Arenazas Rodríguez AJ; Málaga Espinoza CJ
    Microorganisms; 2022 Jul; 10(7):. PubMed ID: 35889133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.