These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9145105)

  • 41. Green and red fluorescent proteins: photo- and thermally induced dynamics probed by site-selective spectroscopy and hole burning.
    Bonsma S; Purchase R; Jezowski S; Gallus J; Könz F; Völker S
    Chemphyschem; 2005 May; 6(5):838-49. PubMed ID: 15884066
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The E1 mechanism in photo-induced beta-elimination reactions for green-to-red conversion of fluorescent proteins.
    Tsutsui H; Shimizu H; Mizuno H; Nukina N; Furuta T; Miyawaki A
    Chem Biol; 2009 Nov; 16(11):1140-7. PubMed ID: 19942137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and characteristics of reassembled fluorescent protein, a new insight into the reassembly mechanisms.
    Isogai M; Kawamoto Y; Inahata K; Fukada H; Sugimoto K; Tada T
    Bioorg Med Chem Lett; 2011 May; 21(10):3021-4. PubMed ID: 21463942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture).
    Tsien RY
    Angew Chem Int Ed Engl; 2009; 48(31):5612-26. PubMed ID: 19565590
    [No Abstract]   [Full Text] [Related]  

  • 45. Structural basis for the phototoxicity of the fluorescent protein KillerRed.
    Carpentier P; Violot S; Blanchoin L; Bourgeois D
    FEBS Lett; 2009 Sep; 583(17):2839-42. PubMed ID: 19646983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biophysics of the green fluorescent protein.
    Prendergast FG
    Methods Cell Biol; 1999; 58():1-18. PubMed ID: 9891371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of the pressure-induced intermediate and unfolded state of red-shifted green fluorescent protein--a static and kinetic FTIR, UV/VIS and fluorescence spectroscopy study.
    Herberhold H; Marchal S; Lange R; Scheyhing CH; Vogel RF; Winter R
    J Mol Biol; 2003 Jul; 330(5):1153-64. PubMed ID: 12860135
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutants of monomeric red fluorescent protein mRFP1 at residue 66: structure modeling by molecular dynamics and search for correlations with spectral properties.
    Khrameeva EE; Drutsa VL; Vrzheshch EP; Dmitrienko DV; Vrzheshch PV
    Biochemistry (Mosc); 2008 Oct; 73(10):1085-95. PubMed ID: 18991554
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein Kaede.
    Hayashi I; Mizuno H; Tong KI; Furuta T; Tanaka F; Yoshimura M; Miyawaki A; Ikura M
    J Mol Biol; 2007 Sep; 372(4):918-926. PubMed ID: 17692334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2.
    Pakhomov AA; Martynov VI
    Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical absorption of the blue fluorescent protein: a first-principles study.
    Lopez X; Marques MA; Castro A; Rubio A
    J Am Chem Soc; 2005 Sep; 127(35):12329-37. PubMed ID: 16131211
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A molecular mechanics and database analysis of the structural preorganization and activation of the chromophore-containing hexapeptide fragment in green fluorescent protein.
    Branchini BR; Lusins JO; Zimmer M
    J Biomol Struct Dyn; 1997 Feb; 14(4):441-8. PubMed ID: 9172644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Slow exchange in the chromophore of a green fluorescent protein variant.
    Seifert MH; Ksiazek D; Azim MK; Smialowski P; Budisa N; Holak TA
    J Am Chem Soc; 2002 Jul; 124(27):7932-42. PubMed ID: 12095337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications.
    Adam V; Moeyaert B; David CC; Mizuno H; Lelimousin M; Dedecker P; Ando R; Miyawaki A; Michiels J; Engelborghs Y; Hofkens J
    Chem Biol; 2011 Oct; 18(10):1241-51. PubMed ID: 22035793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Backbone H(N), N, C(alpha) and C(beta) assignment of the GFPuv mutant.
    Georgescu J; Rehm T; Wiehler J; Steipe B; Holak TA
    J Biomol NMR; 2003 Feb; 25(2):161-2. PubMed ID: 12652126
    [No Abstract]   [Full Text] [Related]  

  • 56. Fluorescent proteins: shine on, you crazy diamond.
    Dedecker P; De Schryver FC; Hofkens J
    J Am Chem Soc; 2013 Feb; 135(7):2387-402. PubMed ID: 23317378
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants.
    Stiel AC; Trowitzsch S; Weber G; Andresen M; Eggeling C; Hell SW; Jakobs S; Wahl MC
    Biochem J; 2007 Feb; 402(1):35-42. PubMed ID: 17117927
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins.
    Kim H; Zou T; Modi C; Dörner K; Grunkemeyer TJ; Chen L; Fromme R; Matz MV; Ozkan SB; Wachter RM
    Structure; 2015 Jan; 23(1):34-43. PubMed ID: 25565105
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Chemistry in studies of fluorescent proteins].
    Miyawaki A
    Tanpakushitsu Kakusan Koso; 2007 Oct; 52(13 Suppl):1558-62. PubMed ID: 18051379
    [No Abstract]   [Full Text] [Related]  

  • 60. Chromophore Structure of Photochromic Fluorescent Protein Dronpa: Acid-Base Equilibrium of Two Cis Configurations.
    Higashino A; Mizuno M; Mizutani Y
    J Phys Chem B; 2016 Apr; 120(13):3353-9. PubMed ID: 26991398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.