These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9145230)

  • 1. Effect of N-B transition on the microenvironment surrounding 34Cys in human serum albumin.
    Narazaki R; Maruyama T; Otagiri M
    Biol Pharm Bull; 1997 Apr; 20(4):452-4. PubMed ID: 9145230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques.
    Narazaki R; Maruyama T; Otagiri M
    Biochim Biophys Acta; 1997 Apr; 1338(2):275-81. PubMed ID: 9128146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of acrylodan with human serum albumin. A fluorescence spectroscopic study.
    Moreno F; Cortijo M; González-Jiménez J
    Photochem Photobiol; 1999 Nov; 70(5):695-700. PubMed ID: 10568165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accessibility of the fluorescent reporter group in native, silica-adsorbed, and covalently attached acrylodan-labeled serum albumins.
    Ingersoll CM; Jordan JD; Bright FV
    Anal Chem; 1996 Sep; 68(18):3194-8. PubMed ID: 8797379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylodan can label amino as well as sulfhydryl groups: results with low-density lipoprotein, lipoprotein[a], and lipid-free proteins.
    Mims MP; Sturgis CB; Sparrow JT; Morrisett JD
    Biochemistry; 1993 Sep; 32(35):9215-20. PubMed ID: 8369288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance energy transfer between tryptophan-214 in human serum albumin and acrylodan, prodan, and promen.
    González-Jiménez J; Cortijo M
    Protein J; 2004 Jul; 23(5):351-5. PubMed ID: 15328891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent binding between bucillamine derivatives and human serum albumin.
    Narazaki R; Hamada M; Harada K; Otagiri M
    Pharm Res; 1996 Sep; 13(9):1317-21. PubMed ID: 8893268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within aerosol-OT reverse micelles.
    Lundgren JS; Heitz MP; Bright FV
    Anal Chem; 1995 Oct; 67(20):3775-81. PubMed ID: 8644923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods.
    Flora K; Brennan JD; Baker GA; Doody MA; Bright FV
    Biophys J; 1998 Aug; 75(2):1084-96. PubMed ID: 9675210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urea-induced denaturation of human serum albumin labeled with acrylodan.
    González-Jiménez J; Cortijo M
    J Protein Chem; 2002 Feb; 21(2):75-9. PubMed ID: 11934277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial relationship between the prodan site, Trp-214, and Cys-34 residues in human serum albumin and loss of structure through incremental unfolding.
    Krishnakumar SS; Panda D
    Biochemistry; 2002 Jun; 41(23):7443-52. PubMed ID: 12044178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of acrylodan-labeled bovine and human serum albumin entrapped in a sol-gel-derived biogel.
    Jordan JD; Dunbar RA; Bright FV
    Anal Chem; 1995 Jul; 67(14):2436-43. PubMed ID: 8686877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics surrounding Cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin.
    Wang R; Sun S; Bekos EJ; Bright FV
    Anal Chem; 1995 Jan; 67(1):149-59. PubMed ID: 7864387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of the chloramine-T induced oxidation of human serum albumin as a model for oxidative damage in vivo.
    Anraku M; Kragh-Hansen U; Kawai K; Maruyama T; Yamasaki Y; Takakura Y; Otagiri M
    Pharm Res; 2003 Apr; 20(4):684-92. PubMed ID: 12739779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of thiol-dependent antioxidant activity of human serum albumin by alkaline pH is due to the B-like conformational change.
    Lee H; Cha MK; Kim IH
    Arch Biochem Biophys; 2000 Aug; 380(2):309-18. PubMed ID: 10933886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acids binding to human serum albumin: Changes of reactivity and glycation level of Cysteine-34 free thiol group with methylglyoxal.
    Pavićević ID; Jovanović VB; Takić MM; Penezić AZ; Aćimović JM; Mandić LM
    Chem Biol Interact; 2014 Dec; 224():42-50. PubMed ID: 25451573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-induced conformational change in cardiac troponin C studied by fluorescence probes attached to Cys-84.
    Dong WJ; Cheung HC
    Biochim Biophys Acta; 1996 Jul; 1295(2):139-46. PubMed ID: 8695639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-nitrosylated human serum albumin-mediated cytoprotective activity is enhanced by fatty acid binding.
    Ishima Y; Akaike T; Kragh-Hansen U; Hiroyama S; Sawa T; Suenaga A; Maruyama T; Kai T; Otagiri M
    J Biol Chem; 2008 Dec; 283(50):34966-75. PubMed ID: 18940810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acrylodan-conjugated cysteine side chains reveal conformational state and ligand site locations of the acetylcholine-binding protein.
    Hibbs RE; Talley TT; Taylor P
    J Biol Chem; 2004 Jul; 279(27):28483-91. PubMed ID: 15117947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the reactivity of the thiol of human serum albumin and its sulfenic derivative by fatty acids.
    Torres MJ; Turell L; Botti H; Antmann L; Carballal S; Ferrer-Sueta G; Radi R; Alvarez B
    Arch Biochem Biophys; 2012 May; 521(1-2):102-10. PubMed ID: 22450170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.