BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 9145812)

  • 1. Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells.
    Silver IA; Deas J; Erecińska M
    Neuroscience; 1997 May; 78(2):589-601. PubMed ID: 9145812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic demands of the Na+/K+ ATPase in mammalian astrocytes.
    Silver IA; Erecińska M
    Glia; 1997 Sep; 21(1):35-45. PubMed ID: 9298845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy relationships between ATP synthesis and K+ gradients in cultured glial-derived cell line.
    Ercińska M; Silver IA
    Acta Biochim Pol; 1987; 34(2):195-203. PubMed ID: 3673441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relations between intracellular ions and energy metabolism under acidotic conditions: a study with nigericin in synaptosomes, neurons, and C6 glioma cells.
    Erecińska M; Nelson D; Dagani F; Deas J; Silver IA
    J Neurochem; 1993 Oct; 61(4):1356-68. PubMed ID: 8376992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glial perspectives of metabolic states during cerebral hypoxia--calcium regulation and metabolic energy.
    Kahlert S; Reiser G
    Cell Calcium; 2004; 36(3-4):295-302. PubMed ID: 15261485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes.
    Erecińska M; Dagani F
    J Gen Physiol; 1990 Apr; 95(4):591-616. PubMed ID: 2159972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes.
    Gerkau NJ; Rakers C; Petzold GC; Rose CR
    J Neurosci Res; 2017 Nov; 95(11):2275-2285. PubMed ID: 28150887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relations between intracellular ions and energy metabolism: a study with monensin in synaptosomes, neurons, and C6 glioma cells.
    Erecińska M; Dagani F; Nelson D; Deas J; Silver IA
    J Neurosci; 1991 Aug; 11(8):2410-21. PubMed ID: 1869922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis.
    Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M
    Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estrogen suppresses the impact of glucose deprivation on astrocytic calcium levels and signaling independently of the nuclear estrogen receptor.
    Arnold S
    Neurobiol Dis; 2005 Oct; 20(1):82-92. PubMed ID: 16137569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Canonical Control of Neuronal Energy Status by the Na
    Baeza-Lehnert F; Saab AS; Gutiérrez R; Larenas V; Díaz E; Horn M; Vargas M; Hösli L; Stobart J; Hirrlinger J; Weber B; Barros LF
    Cell Metab; 2019 Mar; 29(3):668-680.e4. PubMed ID: 30527744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells.
    Allen NJ; Káradóttir R; Attwell D
    J Neurosci; 2005 Jan; 25(4):848-59. PubMed ID: 15673665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra.
    Swanson RA; Farrell K; Stein BA
    Glia; 1997 Sep; 21(1):142-53. PubMed ID: 9298857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress.
    Wang XQ; Xiao AY; Sheline C; Hyrc K; Yang A; Goldberg MP; Choi DW; Yu SP
    J Cell Sci; 2003 May; 116(Pt 10):2099-110. PubMed ID: 12679386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolism of C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats.
    Thoren AE; Helps SC; Nilsson M; Sims NR
    J Neurochem; 2006 May; 97(4):968-78. PubMed ID: 16606370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships among ATP synthesis, K+ gradients, and neurotransmitter amino acid levels in isolated rat brain synaptosomes.
    Dagani F; Erecińska M
    J Neurochem; 1987 Oct; 49(4):1229-40. PubMed ID: 2442308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the relationship between glycolysis and (Na+ + K+)-ATPase in cultured cells.
    Balaban RS; Bader JP
    Biochim Biophys Acta; 1984 Aug; 804(4):419-26. PubMed ID: 6087923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuron-glia interactions in glutamatergic neurotransmission: roles of oxidative and glycolytic adenosine triphosphate as energy source.
    Schousboe A; Sickmann HM; Bak LK; Schousboe I; Jajo FS; Faek SA; Waagepetersen HS
    J Neurosci Res; 2011 Dec; 89(12):1926-34. PubMed ID: 21919035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limitation of glycolysis by hexokinase in rat brain synaptosomes during intense ion pumping.
    Erecińska M; Nelson D; Deas J; Silver IA
    Brain Res; 1996 Jul; 726(1-2):153-9. PubMed ID: 8836555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.