These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9146963)

  • 1. Computer program for the equations describing the steady state of enzyme reactions.
    Varon R; Garcia-Sevilla F; Garcia-Moreno M; Garcia-Canovas F; Peyro R; Duggleby RG
    Comput Appl Biosci; 1997 Apr; 13(2):159-67. PubMed ID: 9146963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient phase of enzyme reactions. Time course equations of the strict and the rapid equilibrium conditions and their computerized derivation.
    Varón R; Ruiz-Galea MM; Garrido-del Solo C; García-Sevilla F; García-Moreno M; García-Cánovas F; Havsteen BH
    Biosystems; 1999 May; 50(2):99-126. PubMed ID: 10367974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The computerized derivation of rate equations for enzyme reactions on the basis of the pseudo-steady-state assumption and the rapid-equilibrium assumption.
    Ishikawa H; Maeda T; Hikita H; Miyatake K
    Biochem J; 1988 Apr; 251(1):175-81. PubMed ID: 3390151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating rate equations for complex enzyme systems by a computer-assisted systematic method.
    Qi F; Dash RK; Han Y; Beard DA
    BMC Bioinformatics; 2009 Aug; 10():238. PubMed ID: 19653903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microcomputer program for fitting two-substrate enzyme rate equations.
    Pinto GF; Oestreicher EG
    Comput Biol Med; 1988; 18(2):135-44. PubMed ID: 3356145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time course equations of the amount of substance in a linear compartmental system and their computerized derivation.
    García-Meseguer MJ; Vidal de Labra JA; García-Cánovas F; Havsteen BH; García-Moreno M; Varón R
    Biosystems; 2001 Mar; 59(3):197-220. PubMed ID: 11311468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of progress curves for enzyme-catalysed reactions. Automatic construction of computer programs for fitting integrated rate equations.
    Duggleby RG; Wood C
    Biochem J; 1989 Mar; 258(2):397-402. PubMed ID: 2705990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-step computer-assisted method for deriving steady-state rate equations.
    Fromm SJ; Fromm HJ
    Biochem Biophys Res Commun; 1999 Nov; 265(2):448-52. PubMed ID: 10558887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer program for the kinetic equations of enzyme reactions. The case in which more than one enzyme species is present at the onset of the reaction.
    Varón R; Havsteen BH; García M; García-Canóvas F; Tudela J
    Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):91-7. PubMed ID: 1883344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control analysis of enzyme mechanisms in terms of the classical steady-state description.
    Südi J
    Biochim Biophys Acta; 1997 Sep; 1341(2):108-36. PubMed ID: 9357952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcomputer simulation of steady-state enzyme kinetics for educational purposes.
    Daron HH; Aull JL
    Comput Appl Biosci; 1986 Sep; 2(3):207-9. PubMed ID: 3333730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic description of sequential, reversible, Michaelis-Menten reactions: practical application of theory to metabolic pathways.
    Brooks SP; Storey KB
    Mol Cell Biochem; 1992 Sep; 115(1):43-8. PubMed ID: 1435764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of steady-state rate equations for enzyme and carrier-transport mechanisms: a microcomputer program.
    Runyan KR; Gunn RB
    Methods Enzymol; 1989; 171():164-90. PubMed ID: 2593840
    [No Abstract]   [Full Text] [Related]  

  • 14. A simple computer program with statistical tests for the analysis of enzyme kinetics.
    Brooks SP
    Biotechniques; 1992 Dec; 13(6):906-11. PubMed ID: 1476744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-based modeling in the teaching of steady-state enzyme kinetics.
    Czerlinski G; Sikorski J
    J Chem Inf Comput Sci; 1976 Feb; 16(1):30-3. PubMed ID: 765350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of periodic input on the quasi-steady state assumptions for enzyme-catalysed reactions.
    Stoleriu I; Davidson FA; Liu JL
    J Math Biol; 2005 Feb; 50(2):115-32. PubMed ID: 15322823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized theoretical treatment of the kinetics of an enzyme-catalysed reaction in the presence of an unstable irreversible modifier.
    Topham CM
    J Theor Biol; 1990 Aug; 145(4):547-72. PubMed ID: 2246902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Java Web Simulation (JWS); a web based database of kinetic models.
    Snoep JL; Olivier BG
    Mol Biol Rep; 2002; 29(1-2):259-63. PubMed ID: 12241068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory and practical application of coupled enzyme reactions: one and two auxiliary enzymes.
    Brooks SP; Espinola T; Suelter CH
    Can J Biochem Cell Biol; 1984 Oct; 62(10):945-55. PubMed ID: 6548935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphic rules in steady and non-steady state enzyme kinetics.
    Chou KC
    J Biol Chem; 1989 Jul; 264(20):12074-9. PubMed ID: 2745429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.