These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9147323)

  • 21. Calcium-activated hyperpolarizations in rat locus coeruleus neurons in vitro.
    Osmanović SS; Shefner SA
    J Physiol; 1993 Sep; 469():89-109. PubMed ID: 7903697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation of the action potential into a Na-channel spike and a K-channel spike by tetrodotoxin and by tetraethylammonium ion in squid giant axons internally perfused with dilute Na-salt solutions.
    Inoue I
    J Gen Physiol; 1980 Sep; 76(3):337-54. PubMed ID: 6252279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionic conductances of squid giant fiber lobe neurons.
    Llano I; Bookman RJ
    J Gen Physiol; 1986 Oct; 88(4):543-69. PubMed ID: 2431097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potassium currents and membrane excitability of neurons in the rat's dorsal nucleus of the lateral lemniscus.
    Fu XW; Wu SH; Brezden BL; Kelly JB
    J Neurophysiol; 1996 Aug; 76(2):1121-32. PubMed ID: 8871225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracellular K+ activates a K(+)- and H(+)-permeable conductance in frog taste receptor cells.
    Kolesnikov SS; Margolskee RF
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):415-32. PubMed ID: 9518702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Somatic voltage-gated potassium currents of rat hippocampal pyramidal cells in organotypic slice cultures.
    Bossu JL; Capogna M; Debanne D; McKinney RA; Gähwiler BH
    J Physiol; 1996 Sep; 495 ( Pt 2)(Pt 2):367-81. PubMed ID: 8887750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of rubidium ions on components of the potassium conductance in the frog node of Ranvier.
    Plant TD
    J Physiol; 1986 Jun; 375():81-105. PubMed ID: 2432229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro.
    Constanti A; Sim JA
    J Physiol; 1987 Jun; 387():173-94. PubMed ID: 2443678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a voltage-dependent potassium channel in squid Schwann cells reconstituted in planar lipid bilayers.
    Noceti F; Ramírez AN; Possani LD; Prestipino G
    Glia; 1995 Sep; 15(1):33-42. PubMed ID: 8847099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of the inwardly rectifying K+ conductance in the toad retinal pigment epithelium.
    Segawa Y; Hughes BA
    J Physiol; 1994 Apr; 476(1):41-53. PubMed ID: 8046634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones.
    Li Z; Hatton GI
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):95-106. PubMed ID: 9409474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons.
    Clay JR; Paydarfar D; Forger DB
    J R Soc Interface; 2008 Dec; 5(29):1421-8. PubMed ID: 18544505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation.
    Pelz C; Jander J; Rosenboom H; Hammer M; Menzel R
    J Neurophysiol; 1999 Apr; 81(4):1749-59. PubMed ID: 10200210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of activation of the potassium conductance in the squid giant axon.
    Keynes RD; Kimura JE; Greeff NG
    Proc R Soc Lond B Biol Sci; 1988 Jan; 232(1269):375-94. PubMed ID: 2895477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of voltage-sensitive Na+ and K+ currents recorded from acutely dissociated pelvic ganglion neurons of the adult rat.
    Yoshimura N; De Groat WC
    J Neurophysiol; 1996 Oct; 76(4):2508-21. PubMed ID: 8899623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Axon/Schwann-cell relationships in the giant nerve fibre of the squid.
    Villegas J
    J Exp Biol; 1981 Dec; 95():135-51. PubMed ID: 7334317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fast transient potassium current in thalamic relay neurons: kinetics of activation and inactivation.
    Huguenard JR; Coulter DA; Prince DA
    J Neurophysiol; 1991 Oct; 66(4):1304-15. PubMed ID: 1662262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glia-axon interactions and the regulation of the extracellular K+ in the peripheral nerve.
    Jirounek P; Robert A; Kindler E; Blazek T
    Sb Lek; 1998; 99(4):413-22. PubMed ID: 10803282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of glutamate activation of axon-to-Schwann cell signaling in the squid.
    Lieberman EM; Sanzenbacher E
    Neuroscience; 1992; 47(4):931-9. PubMed ID: 1349735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time course of TEA(+)-induced anomalous rectification in squid giant axons.
    Armstrong CM
    J Gen Physiol; 1966 Nov; 50(2):491-503. PubMed ID: 11526842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.