These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. [Activity of Krebs cycle oxidative enzymes in the brain in hypothermia]. Volzhina-Atabegova NG Vopr Med Khim; 1979; 25(3):308-11. PubMed ID: 452497 [TBL] [Abstract][Full Text] [Related]
7. Central carbon metabolism in marine bacteria examined with a simplified assay for dehydrogenases. Wen W; Wang S; Zhou X; Fang B Appl Biochem Biotechnol; 2013 Jun; 170(3):473-82. PubMed ID: 23553104 [TBL] [Abstract][Full Text] [Related]
8. Participation of cytochromes in some oxidation-reduction systems in Campylobacter fetus. Lascelles J; Calder KM J Bacteriol; 1985 Oct; 164(1):401-9. PubMed ID: 2995315 [TBL] [Abstract][Full Text] [Related]
9. Regulation of carbon and electron flow in Propionispira arboris: relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalonyl coenzyme A pathway. Thompson TE; Zeikus JG J Bacteriol; 1988 Sep; 170(9):3996-4000. PubMed ID: 3410821 [TBL] [Abstract][Full Text] [Related]
10. Citrate cycle and related metabolism of Listeria monocytogenes. Trivett TL; Meyer EA J Bacteriol; 1971 Sep; 107(3):770-9. PubMed ID: 4999414 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the tricarboxylic acid cycle in gram-positive, facultatively anaerobic bacilli. Tanaka N; Hanson RS J Bacteriol; 1975 Apr; 122(1):215-223. PubMed ID: 1123317 [TBL] [Abstract][Full Text] [Related]
12. Unity and diversity in some bacterial citric acid-cycle enzymes. Weitzman PD Adv Microb Physiol; 1981; 22():185-244. PubMed ID: 7036695 [No Abstract] [Full Text] [Related]
13. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. Tretter L; Adam-Vizi V J Neurosci; 2000 Dec; 20(24):8972-9. PubMed ID: 11124972 [TBL] [Abstract][Full Text] [Related]
14. Thiol:fumarate reductase (Tfr) from Methanobacterium thermoautotrophicum--identification of the catalytic sites for fumarate reduction and thiol oxidation. Heim S; Künkel A; Thauer RK; Hedderich R Eur J Biochem; 1998 Apr; 253(1):292-9. PubMed ID: 9578488 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterization of ferredoxin-nicotinamide adenine dinucleotide phosphate reductase from a nitrogen-fixing bacterium. Yoch DC J Bacteriol; 1973 Oct; 116(1):384-91. PubMed ID: 4147648 [TBL] [Abstract][Full Text] [Related]
17. [The activity of the dehydrogenases of the tricarboxylic acid cycle and concentration of adenylic nucleotides in the brain and liver in experimental hypothyroidism]. Glushakova NE; Misiuk EM; Taranovich GL Probl Endokrinol (Mosk); 1976; 22(1):50-4. PubMed ID: 1257219 [TBL] [Abstract][Full Text] [Related]
18. The role of nicotinamide-adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide-adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary. Flint AP; Denton RM Biochem J; 1970 Mar; 117(1):73-83. PubMed ID: 4393612 [TBL] [Abstract][Full Text] [Related]
19. Enzymes of carbohydrate metabolism in four human species of Leishmania: a comparative survey. Martin E; Simon MW; Schaefer FW; Mukkada AJ J Protozool; 1976 Nov; 23(4):600-7. PubMed ID: 1003346 [TBL] [Abstract][Full Text] [Related]
20. Malic enzyme, malate dehydrogenase, fumarate reductase and succinate dehydrogenase in the larvae of Taenia crassiceps (Zeder, 1800). Zenka J; Prokopic J Folia Parasitol (Praha); 1987; 34(2):131-6. PubMed ID: 3596392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]