These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9147979)

  • 21. Distribution of contact force during impact to the hip.
    Robinovitch SN; Hayes WC; McMahon TA
    Ann Biomed Eng; 1997; 25(3):499-508. PubMed ID: 9146804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls.
    Choi WJ; Cripton PA; Robinovitch SN
    Osteoporos Int; 2015 Jan; 26(1):291-301. PubMed ID: 25027112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fall arrest strategy affects peak hand impact force in a forward fall.
    DeGoede KM; Ashton-Miller JA
    J Biomech; 2002 Jun; 35(6):843-8. PubMed ID: 12021005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protective arm movements are modulated with fall height.
    Borrelli J; Creath R; Rogers MW
    J Biomech; 2020 Jan; 99():109569. PubMed ID: 31898976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can martial arts techniques reduce fall severity? An in vivo study of femoral loading configurations in sideways falls.
    van der Zijden AM; Groen BE; Tanck E; Nienhuis B; Verdonschot N; Weerdesteyn V
    J Biomech; 2012 Jun; 45(9):1650-5. PubMed ID: 22537568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sideways fall-induced impact force and its effect on hip fracture risk: a review.
    Nasiri Sarvi M; Luo Y
    Osteoporos Int; 2017 Oct; 28(10):2759-2780. PubMed ID: 28730547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of fall characteristics on the severity of hip impact during a fall on the ground from standing height.
    Lim KT; Choi WJ
    Osteoporos Int; 2020 Sep; 31(9):1713-1719. PubMed ID: 32346772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man.
    Allum JH; Carpenter MG; Honegger F; Adkin AL; Bloem BR
    J Physiol; 2002 Jul; 542(Pt 2):643-63. PubMed ID: 12122159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanics of fall arrest using the upper extremity: age differences.
    Kim KJ; Ashton-Miller JA
    Clin Biomech (Bristol, Avon); 2003 May; 18(4):311-8. PubMed ID: 12689781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.
    Majumder S; Roychowdhury A; Pal S
    Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients.
    Parkkari J; Kannus P; Palvanen M; Natri A; Vainio J; Aho H; Vuori I; Järvinen M
    Calcif Tissue Int; 1999 Sep; 65(3):183-7. PubMed ID: 10441647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinematics, kinetics and muscle activation patterns of the upper extremity during simulated forward falls.
    Burkhart TA; Andrews DM
    J Electromyogr Kinesiol; 2013 Jun; 23(3):688-95. PubMed ID: 23461834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reliability of impact forces, hip angles and velocities during simulated forward falls using a novel Propelled Upper Limb fall ARrest Impact System (PULARIS).
    Burkhart TA; Clarke D; Andrews DM
    J Biomech Eng; 2012 Jan; 134(1):011001. PubMed ID: 22482656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploration and comparison of the pre-impact lead time of active and passive falls based on inertial sensors.
    Liang D; Ivanov K; Li H; Ning Y; Zhang Q; Wang L; Zhao G
    Biomed Mater Eng; 2014; 24(1):279-88. PubMed ID: 24211908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hip fractures. Epidemiology, risk factors, falls, energy absorption, hip protectors, and prevention.
    Lauritzen JB
    Dan Med Bull; 1997 Apr; 44(2):155-68. PubMed ID: 9151010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical considerations of hip and spine fractures in osteoporotic bone.
    Hayes WC; Myers ER
    Instr Course Lect; 1997; 46():431-8. PubMed ID: 9143985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reading from the Black Box: What Sensors Tell Us about Resting and Recovery after Real-World Falls.
    Schwickert L; Klenk J; Zijlstra W; Forst-Gill M; Sczuka K; Helbostad JL; Chiari L; Aminian K; Todd C; Becker C
    Gerontology; 2018; 64(1):90-95. PubMed ID: 28848150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Explicit Finite Element Models Accurately Predict Subject-Specific and Velocity-Dependent Kinetics of Sideways Fall Impact.
    Fleps I; Guy P; Ferguson SJ; Cripton PA; Helgason B
    J Bone Miner Res; 2019 Oct; 34(10):1837-1850. PubMed ID: 31163090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Fall Biomechanics on Risk for Hip Fracture in Older Adults: A Cohort Study of Video-Captured Falls in Long-Term Care.
    Yang Y; Komisar V; Shishov N; Lo B; Korall AM; Feldman F; Robinovitch SN
    J Bone Miner Res; 2020 Oct; 35(10):1914-1922. PubMed ID: 32402136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hip fracture risk functions for elderly men and women in sideways falls.
    Kleiven S
    J Biomech; 2020 May; 105():109771. PubMed ID: 32423538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.