These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9147990)

  • 1. Actin filament mechanics in the laser trap.
    Dupuis DE; Guilford WH; Wu J; Warshaw DM
    J Muscle Res Cell Motil; 1997 Feb; 18(1):17-30. PubMed ID: 9147990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force on single actin filaments in a motility assay measured with an optical trap.
    Simmons RM; Finer JT; Warrick HM; Kralik B; Chu S; Spudich JA
    Adv Exp Med Biol; 1993; 332():331-6; discussion 336-7. PubMed ID: 8109348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement of single myosin filaments and myosin step size on an actin filament suspended in solution by a laser trap.
    Saito K; Aoki T; Aoki T; Yanagida T
    Biophys J; 1994 Mar; 66(3 Pt 1):769-77. PubMed ID: 8011909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap.
    Guilford WH; Dupuis DE; Kennedy G; Wu J; Patlak JB; Warshaw DM
    Biophys J; 1997 Mar; 72(3):1006-21. PubMed ID: 9138552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the insertion of actin monomers between the barbed ends of actin filaments and barbed end-bound insertin.
    Gaertner A; Wegner A
    J Muscle Res Cell Motil; 1991 Feb; 12(1):27-36. PubMed ID: 2050808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zigzag motions of the myosin-coated beads actively sliding along actin filaments suspended between immobilized beads.
    Wakayama J; Shohara M; Yagi C; Ono H; Miyake N; Kunioka Y; Yamada T
    Biochim Biophys Acta; 2002 Oct; 1573(1):93-9. PubMed ID: 12383947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of single actin-myosin interactions.
    Finer JT; Mehta AD; Spudich JA
    Biophys J; 1995 Apr; 68(4 Suppl):291S-296S; discussion 296S-297S. PubMed ID: 7787094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced potential model for muscular contraction mechanism, including two attached states of myosin head.
    Mitsui T; Kumagai S; Chiba H; Yoshimura H; Ohshima H
    J Theor Biol; 1998 May; 192(1):35-41. PubMed ID: 9628837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation.
    Tsuda Y; Yasutake H; Ishijima A; Yanagida T
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12937-42. PubMed ID: 8917522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-myosin crossbridge interactions with actin filaments regulated by troponin-tropomyosin.
    Kad NM; Kim S; Warshaw DM; VanBuren P; Baker JE
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):16990-5. PubMed ID: 16287977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion of myosin filaments due to interaction of the two-headed myosin crossbridge with two actin filaments.
    Sydorenko NP
    J Muscle Res Cell Motil; 1984 Apr; 5(2):117-29. PubMed ID: 6539341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation of actin monomers in moving actin filaments.
    Kinosita K; Suzuki N; Ishiwata S; Nishizaka T; Itoh H; Hakozaki H; Marriott G; Miyata H
    Adv Exp Med Biol; 1993; 332():321-8; discussion 329. PubMed ID: 8109346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay.
    Suzuki N; Miyata H; Ishiwata S; Kinosita K
    Biophys J; 1996 Jan; 70(1):401-8. PubMed ID: 8770216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unidirectional sliding of myosin filaments along the bundle of F-actin filaments spontaneously formed during superprecipitation.
    Higashi-Fujime S
    J Cell Biol; 1985 Dec; 101(6):2335-44. PubMed ID: 4066761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tension and stiffness of frog muscle fibres at full filament overlap.
    Bagni MA; Cecchi G; Colomo F; Poggesi C
    J Muscle Res Cell Motil; 1990 Oct; 11(5):371-7. PubMed ID: 2266164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tying a molecular knot with optical tweezers.
    Arai Y; Yasuda R; Akashi K; Harada Y; Miyata H; Kinosita K; Itoh H
    Nature; 1999 Jun; 399(6735):446-8. PubMed ID: 10365955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles.
    Apgar J; Tseng Y; Fedorov E; Herwig MB; Almo SC; Wirtz D
    Biophys J; 2000 Aug; 79(2):1095-106. PubMed ID: 10920039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smooth muscle myosin: a high force-generating molecular motor.
    VanBuren P; Guilford WH; Kennedy G; Wu J; Warshaw DM
    Biophys J; 1995 Apr; 68(4 Suppl):256S-258S; 258S-259S. PubMed ID: 7787086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging single protein polymers to measure flexural rigidity.
    van Mameren J; Vermeulen KC; Gittes F; Schmidt CF
    J Phys Chem B; 2009 Mar; 113(12):3837-44. PubMed ID: 19673071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.