These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 914857)
1. Glutarate semialdehyde dehydrogenase of Pseudomonas. Purification, properties, and relation to L-lysine catabolism. Chang YF; Adams E J Biol Chem; 1977 Nov; 252(22):7979-86. PubMed ID: 914857 [TBL] [Abstract][Full Text] [Related]
2. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. Chang YF; Adams E J Bacteriol; 1974 Feb; 117(2):753-64. PubMed ID: 4359655 [TBL] [Abstract][Full Text] [Related]
3. Factors influencing growth on L-lysine by Pseudomonas. Regulation of terminal enzymes in the delta-aminovalerate pathway and growth stimulation by alpha ketoglutarate. Chang YF; Adams E J Biol Chem; 1977 Nov; 252(22):7987-91. PubMed ID: 914858 [No Abstract] [Full Text] [Related]
4. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Rohles CM; Gießelmann G; Kohlstedt M; Wittmann C; Becker J Microb Cell Fact; 2016 Sep; 15(1):154. PubMed ID: 27618862 [TBL] [Abstract][Full Text] [Related]
5. Catabolism of L-lysine by Pseudomonas aeruginosa. Fothergill JC; Guest JR J Gen Microbiol; 1977 Mar; 99(1):139-55. PubMed ID: 405455 [TBL] [Abstract][Full Text] [Related]
6. Widespread bacterial lysine degradation proceeding via glutarate and L-2-hydroxyglutarate. Knorr S; Sinn M; Galetskiy D; Williams RM; Wang C; Müller N; Mayans O; Schleheck D; Hartig JS Nat Commun; 2018 Nov; 9(1):5071. PubMed ID: 30498244 [TBL] [Abstract][Full Text] [Related]
7. Purification, characterization, and sequence analysis of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas pseudoalcaligenes JS45. He Z; Davis JK; Spain JC J Bacteriol; 1998 Sep; 180(17):4591-5. PubMed ID: 9721300 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Park SJ; Kim EY; Noh W; Park HM; Oh YH; Lee SH; Song BK; Jegal J; Lee SY Metab Eng; 2013 Mar; 16():42-7. PubMed ID: 23246520 [TBL] [Abstract][Full Text] [Related]
9. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Adkins J; Jordan J; Nielsen DR Biotechnol Bioeng; 2013 Jun; 110(6):1726-34. PubMed ID: 23296991 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase. Liu P; Zhang H; Lv M; Hu M; Li Z; Gao C; Xu P; Ma C Sci Rep; 2014 Jul; 4():5657. PubMed ID: 25012259 [TBL] [Abstract][Full Text] [Related]
11. Lysine degradation in Candida. Characterization and probable role of L-norleucine-leucine, 4-aminobutyrate and delta-aminovalerate:2-oxoglutarate aminotransferases. Der Garabedian PA; Vermeersch JJ Biochimie; 1989 Apr; 71(4):497-503. PubMed ID: 2503054 [TBL] [Abstract][Full Text] [Related]
12. Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving L-2-hydroxyglutarate. Zhang M; Gao C; Guo X; Guo S; Kang Z; Xiao D; Yan J; Tao F; Zhang W; Dong W; Liu P; Yang C; Ma C; Xu P Nat Commun; 2018 May; 9(1):2114. PubMed ID: 29844506 [TBL] [Abstract][Full Text] [Related]
13. Efficient Production of the Dicarboxylic Acid Glutarate by Pérez-García F; Jorge JMP; Dreyszas A; Risse JM; Wendisch VF Front Microbiol; 2018; 9():2589. PubMed ID: 30425699 [TBL] [Abstract][Full Text] [Related]
14. Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria. Watson GK; Cain RB Biochem J; 1975 Jan; 146(1):157-72. PubMed ID: 1147895 [TBL] [Abstract][Full Text] [Related]
15. Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and gamma-aminobutyrate. Donnelly MI; Cooper RA Eur J Biochem; 1981 Jan; 113(3):555-61. PubMed ID: 7011797 [TBL] [Abstract][Full Text] [Related]
16. Properties of revertants of lys2 and lys5 mutants as well as alpha-aminoadipate-semialdehyde dehydrogenase from Saccharomyces cerevisiae. Storts DR; Bhattacharjee JK Biochem Biophys Res Commun; 1989 May; 161(1):182-6. PubMed ID: 2499333 [TBL] [Abstract][Full Text] [Related]
17. alpha-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline. Molecular and metabolic convergent evolution. Watanabe S; Yamada M; Ohtsu I; Makino K J Biol Chem; 2007 Mar; 282(9):6685-95. PubMed ID: 17202142 [TBL] [Abstract][Full Text] [Related]
18. Purification and properties of alpha-hydroxy-gamma-carboxymuconic epsilon-semialdehyde dehydrogenase. Maruyama K; Ariga N; Tsuda M; Deguchi K J Biochem; 1978 Apr; 83(4):1125-34. PubMed ID: 26671 [No Abstract] [Full Text] [Related]
19. Inhibition of alpha-aminoadipate-semialdehyde dehydrogenase from Trichosporon adeninovorans by lysine and lysine analogues. Schmidt H; Bode R; Birnbaum D FEMS Microbiol Lett; 1990 Jun; 58(1):41-4. PubMed ID: 1975789 [TBL] [Abstract][Full Text] [Related]
20. Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440. Revelles O; Espinosa-Urgel M; Fuhrer T; Sauer U; Ramos JL J Bacteriol; 2005 Nov; 187(21):7500-10. PubMed ID: 16237033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]