These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 91487)

  • 21. Relations between the pulvinar-lateralis posterior complex of the thalamus and the hippocampus in wakefulness and sleep in cats.
    Crighel E; Kreindler A; Sirian S
    Acta Neurobiol Exp (Wars); 1978; 38(4):167-78. PubMed ID: 215003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The organization of the neuronal activity of the cortical cingulate gyrus in the waking-sleep cycle].
    Oniani TN; Mandzhavidze ShD; Gvetadze LB; Varazashvili PN
    Neirofiziologiia; 1989; 21(6):832-40. PubMed ID: 2630921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation of the Tuberomammillary Nucleus by GABA
    Xie JF; Fan K; Wang C; Xie P; Hou M; Xin L; Cui GF; Wang LX; Shao YF; Hou YP
    Neurochem Res; 2017 Aug; 42(8):2314-2325. PubMed ID: 28365867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2009 Jun; 161(1):269-92. PubMed ID: 19285545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sleep patterns in the bird Aratinga canicularis.
    Ayala-Guerrero F; Pérez MC; Calderón A
    Physiol Behav; 1988; 43(5):585-9. PubMed ID: 3200913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. REM sleep remains paradoxical: sub-states determined by thalamo-cortical and cortico-cortical functional connectivity.
    Bastuji H; Daoud M; Magnin M; Garcia-Larrea L
    J Physiol; 2024 Oct; 602(20):5269-5287. PubMed ID: 39315951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ventral hippocampus spikes during sleep, wakefulness, and arousal in the cat.
    Hartse KM; Eisenhart SF; Bergmann BM; Rechtschaffen A
    Sleep; 1979; 1(3):231-46. PubMed ID: 504871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spindle and slow wave rhythms at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential.
    Marshall L; Mölle M; Born J
    Neuroscience; 2003; 121(4):1047-53. PubMed ID: 14580954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice.
    Sakai K
    Neuroscience; 2014 Feb; 260():249-64. PubMed ID: 24355494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation of EEG activities between slow-wave sleep and wakefulness in patients with supra-tentorial stroke.
    Yokoyama E; Nagata K; Hirata Y; Satoh Y; Watahiki Y; Yuya H
    Brain Topogr; 1996; 8(3):269-73. PubMed ID: 8728417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavioural state-specific neurons in the mouse medulla involved in sleep-wake switching.
    Sakai K
    Eur J Neurosci; 2018 Jun; 47(12):1482-1503. PubMed ID: 29791042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early thalamic injury associated with epilepsy and continuous spike-wave during slow sleep.
    Guzzetta F; Battaglia D; Veredice C; Donvito V; Pane M; Lettori D; Chiricozzi F; Chieffo D; Tartaglione T; Dravet C
    Epilepsia; 2005 Jun; 46(6):889-900. PubMed ID: 15946329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tonic and phasic modifications of viscerosensory evoked potentials during sleep in cats.
    Kukorelli T; Juhász G
    Acta Physiol Hung; 1983; 61(4):237-46. PubMed ID: 6650190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preoptic area unit activity during sleep and wakefulness in the cat.
    Kaitin KI
    Exp Neurol; 1984 Feb; 83(2):347-57. PubMed ID: 6692872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conditioned modification of viscerosensory evoked potentials during sleep and wakefulness in cats.
    Kukorelli T; Juhász G; Adám G
    Acta Physiol Hung; 1983; 61(4):247-58. PubMed ID: 6650191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EEG slow (approximately 1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human.
    Massimini M; Rosanova M; Mariotti M
    J Neurophysiol; 2003 Mar; 89(3):1205-13. PubMed ID: 12626608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cortical and thalamic visual evoked potentials during sleep-wake states and spike-wave discharges in the rat.
    Meeren HK; Van Luijtelaar EL; Coenen AM
    Electroencephalogr Clin Neurophysiol; 1998 Apr; 108(3):306-19. PubMed ID: 9607520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleep changes in long-term fasting geese in relation to lipid and protein metabolism.
    Dewasmes G; Cohen-Adad F; Koubi H; Le Maho Y
    Am J Physiol; 1984 Oct; 247(4 Pt 2):R663-71. PubMed ID: 6496715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A brainstem-to-mediodorsal thalamic pathway mediates sound-induced arousal from slow-wave sleep.
    Shin A; Park S; Shin W; Woo J; Jeong M; Kim J; Kim D
    Curr Biol; 2023 Mar; 33(5):875-885.e5. PubMed ID: 36754050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spontaneous and evoked activities of anterior thalamic neurons during waking and sleep states.
    Paré D; Bouhassira D; Oakson G; Datta S
    Exp Brain Res; 1990; 80(1):54-62. PubMed ID: 2358037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.