These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9148707)

  • 1. Useful applications and limits of battery powered implants in functional electrical stimulations.
    Lanmüller H; Bijak M; Mayr W; Rafolt D; Sauermann S; Thoma H
    Artif Organs; 1997 Mar; 21(3):210-2. PubMed ID: 9148707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multichannel stimulation of phrenic nerves by epineural electrodes. Clinical experience and future developments.
    Mayr W; Bijak M; Girsch W; Holle J; Lanmüller H; Thoma H; Zrunek M
    ASAIO J; 1993; 39(3):M729-35. PubMed ID: 8268634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical stimulation in spinal cord injury.
    Sadowsky CL
    NeuroRehabilitation; 2001; 16(3):165-9. PubMed ID: 11790901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Battery-powered implantable nerve stimulator for chronic activation of two skeletal muscles using multichannel techniques.
    Lanmüller H; Sauermann S; Unger E; Schnetz G; Mayr W; Bijak M; Rafolt D; Girsch W
    Artif Organs; 1999 May; 23(5):399-402. PubMed ID: 10378928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical stimulation to restore respiration.
    Creasey G; Elefteriades J; DiMarco A; Talonen P; Bijak M; Girsch W; Kantor C
    J Rehabil Res Dev; 1996 Apr; 33(2):123-32. PubMed ID: 8724168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacing the body's own sensing receptors into neural prosthesis devices.
    Haugland M; Sinkjaer T
    Technol Health Care; 1999; 7(6):393-9. PubMed ID: 10665672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroprosthetics of the upper extremity--clinical application in spinal cord injury and future perspectives.
    Rupp R; Gerner HJ
    Biomed Tech (Berl); 2004 Apr; 49(4):93-8. PubMed ID: 15171589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional electrical stimulation in tetraplegic patients to restore hand function.
    Degnan GG; Wind TC; Jones EV; Edlich RF
    J Long Term Eff Med Implants; 2002; 12(3):175-88. PubMed ID: 12545943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural prostheses in the respiratory system.
    DiMarco AF
    J Rehabil Res Dev; 2001; 38(6):601-7. PubMed ID: 11767967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer aided adjustment of the phrenic pacemaker: automatic functions, documentation, and quality control.
    Sauermann S; Bijak M; Schmutterer C; Unger E; Lanmüller H; Mayr W; Thoma H
    Artif Organs; 1997 Mar; 21(3):216-8. PubMed ID: 9148709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of leg-powered paraplegic cycling using stimulation of the lumbo-sacral anterior spinal nerve roots.
    Perkins TA; de N Donaldson N; Hatcher NA; Swain ID; Wood DE
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):158-64. PubMed ID: 12503780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless wearable controller for upper-limb neuroprosthesis.
    Wheeler CA; Peckham PH
    J Rehabil Res Dev; 2009; 46(2):243-56. PubMed ID: 19533538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging clinical applications of electrical stimulation: opportunities for restoration of function.
    Grill WM; Craggs MD; Foreman RD; Ludlow CL; Buller JL
    J Rehabil Res Dev; 2001; 38(6):641-53. PubMed ID: 11767972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a battery-free ultrasonically powered functional electrical stimulator for movement restoration after paralyzing spinal cord injury.
    Alam M; Li S; Ahmed RU; Yam YM; Thakur S; Wang XY; Tang D; Ng S; Zheng YP
    J Neuroeng Rehabil; 2019 Mar; 16(1):36. PubMed ID: 30850027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term user perceptions of an implanted neuroprosthesis for exercise, standing, and transfers after spinal cord injury.
    Agarwal S; Triolo RJ; Kobetic R; Miller M; Bieri C; Kukke S; Rohde L; Davis JA
    J Rehabil Res Dev; 2003; 40(3):241-52. PubMed ID: 14582528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implantable volume monitor and miniaturized stimulator dedicated to bladder control.
    Sawan M; Arabi K; Provost B
    Artif Organs; 1997 Mar; 21(3):219-22. PubMed ID: 9148710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pilot study of myoelectrically controlled FES of upper extremity.
    Thorsen R; Spadone R; Ferrarin M
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):161-8. PubMed ID: 11474969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of an implant for preventing incontinence after spinal cord injury.
    Donaldson N; Perkins T; Pachnis I; Vanhoest A; Demosthenous A
    Artif Organs; 2008 Aug; 32(8):586-91. PubMed ID: 18782126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Spinal cord injuries. An intact nerve can be enough for a successful phrenic nerve stimulation].
    Karlsson AK; Dernevik L; Houltz B
    Lakartidningen; 2009 Mar 11-17; 106(11):779. PubMed ID: 19418801
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.