These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9148714)

  • 21. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.
    Farhoud A; Erfanian A
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):533-42. PubMed ID: 24760923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation of function and energy metabolism in rat ischemic skeletal muscle by 31P-NMR spectroscopy: effects of torbafylline.
    Koch H; Okyayuz-Baklouti I; Norris D; Kogler H; Leibfritz D
    J Med; 1993; 24(1):47-66. PubMed ID: 8501403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of dimethylformamide on in vivo fatigue and metabolism in rat skeletal muscle measured by 31P-NMR.
    Le Tallec N; Lacroix P; de Certaines JD; Chagneau F; Levasseur R; Le Rumeur E
    J Pharmacol Toxicol Methods; 1996 Jun; 35(3):139-43. PubMed ID: 8782091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A predictive model of fatigue in human skeletal muscles.
    Ding J; Wexler AS; Binder-Macleod SA
    J Appl Physiol (1985); 2000 Oct; 89(4):1322-32. PubMed ID: 11007565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Similar metabolic perturbations during all-out and constant force exhaustive exercise in humans: a (31)P magnetic resonance spectroscopy study.
    Burnley M; Vanhatalo A; Fulford J; Jones AM
    Exp Physiol; 2010 Jul; 95(7):798-807. PubMed ID: 20360422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rats bred for low aerobic capacity become promptly fatigued and have slow metabolic recovery after stimulated, maximal muscle contractions.
    Torvinen S; Silvennoinen M; Piitulainen H; Närväinen J; Tuunanen P; Gröhn O; Koch LG; Britton SL; Kainulainen H
    PLoS One; 2012; 7(11):e48345. PubMed ID: 23185253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting the effect of muscle length on fatigue during electrical stimulation.
    Marion MS; Wexler AS; Hull ML; Binder-Macleod SA
    Muscle Nerve; 2009 Oct; 40(4):573-81. PubMed ID: 19626673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation.
    Kesar T; Binder-Macleod S
    Exp Physiol; 2006 Nov; 91(6):967-76. PubMed ID: 16873456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A predictive fatigue model--II: Predicting the effect of resting times on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):59-67. PubMed ID: 12173740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model-based control of FES-induced single joint movements.
    Ferrarin M; Palazzo F; Riener R; Quintern J
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):245-57. PubMed ID: 11561660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle fatigue unrelated to phosphocreatine and pH: an "in vivo" 31-P NMR spectroscopy study.
    Le Rumeur E; Le Moyec L; Toulouse P; Le Bars R; de Certaines JD
    Muscle Nerve; 1990 May; 13(5):438-44. PubMed ID: 2345561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling the length dependence of isometric force in human quadriceps muscles.
    Perumal R; Wexler AS; Ding J; Binder-Macleod SA
    J Biomech; 2002 Jul; 35(7):919-30. PubMed ID: 12052394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contraction and recovery of living muscles studies by 31P nuclear magnetic resonance.
    Dawson MJ; Gadian DG; Wilkie DR
    J Physiol; 1977 Jun; 267(3):703-35. PubMed ID: 17739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skeletal muscle bioenergetics during frequency-dependent fatigue.
    Bridges CR; Clark BJ; Hammond RL; Stephenson LW
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C643-51. PubMed ID: 2003585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and validation of FES physiological musculoskeletal model in paraplegic subjects.
    Benoussaad M; Hayashibe M; Fattal C; Poignet P; Guiraud D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6538-41. PubMed ID: 19964899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle fatigue in interrupted stimulation: Effect of partial recovery on force and EMG dynamics.
    Mizrahi J; Levin O; Aviram A; Isakov E; Susak Z
    J Electromyogr Kinesiol; 1997 Mar; 7(1):51-65. PubMed ID: 20719691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
    Shields RK; Dudley-Javoroski S; Littmann AE
    J Appl Physiol (1985); 2006 Aug; 101(2):556-65. PubMed ID: 16575026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of length and stimulation frequency on fatigue of the human tibialis anterior muscle.
    Sacco P; McIntyre DB; Jones DA
    J Appl Physiol (1985); 1994 Sep; 77(3):1148-54. PubMed ID: 7836116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors in fatigue during intermittent electrical stimulation of human skeletal muscle.
    Russ DW; Vandenborne K; Binder-Macleod SA
    J Appl Physiol (1985); 2002 Aug; 93(2):469-78. PubMed ID: 12133852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.