These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9148718)

  • 1. Restoration of lateral hand grasp using natural sensors.
    Haugland M; Lickel A; Riso R; Adamczyk MM; Keith M; Jensen IL; Haase J; Sinkjaer T
    Artif Organs; 1997 Mar; 21(3):250-3. PubMed ID: 9148718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of FES thumb force using slip information obtained from the cutaneous electroneurogram in quadriplegic man.
    Haugland M; Lickel A; Haase J; Sinkjaer T
    IEEE Trans Rehabil Eng; 1999 Jun; 7(2):215-27. PubMed ID: 10391592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of FES-induced grasp force based on cutaneous nerve signals: experiments and modelling.
    Inmann A; Haugland M
    Med Eng Phys; 2012 Jan; 34(1):46-55. PubMed ID: 21764352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signals from skin mechanoreceptors used in control of a hand grasp neuroprosthesis.
    Inmann A; Haugland M; Haase J; Biering-Sørensen F; Sinkjaer T
    Neuroreport; 2001 Sep; 12(13):2817-20. PubMed ID: 11588583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of natural sensory feedback in a portable control system for a hand grasp neuroprosthesis.
    Inmann A; Haugland M
    Med Eng Phys; 2004 Jul; 26(6):449-58. PubMed ID: 15234681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Functional Electrical Stimulation in Tetraplegic Patients to Restore Hand Function.
    Degnan GG; Wind TC; Jones EV; Edlich R
    J Long Term Eff Med Implants; 2017; 27(2-4):293-306. PubMed ID: 29773045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional evaluation of natural sensory feedback incorporated in a hand grasp neuroprosthesis.
    Inmann A; Haugland M
    Med Eng Phys; 2004 Jul; 26(6):439-47. PubMed ID: 15234680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoration of tetraplegic hand function by use of the neurocontrol freehand system.
    Hobby J; Taylor PN; Esnouf J
    J Hand Surg Br; 2001 Oct; 26(5):459-64. PubMed ID: 11560429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First permanent implant of nerve stimulation leads activated by surface electrodes, enabling hand grasp and release: the stimulus router neuroprosthesis.
    Gan LS; Ravid E; Kowalczewski JA; Olson JL; Morhart M; Prochazka A
    Neurorehabil Neural Repair; 2012 May; 26(4):335-43. PubMed ID: 21959674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An instrumented object for evaluation of lateral hand grasp during functional tasks.
    Inmann A; Haugland M
    J Med Eng Technol; 2001; 25(5):207-11. PubMed ID: 11695661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implanted functional electrical stimulation hand system in adolescents with spinal injuries: an evaluation.
    Mulcahey MJ; Betz RR; Smith BT; Weiss AA; Davis SE
    Arch Phys Med Rehabil; 1997 Jun; 78(6):597-607. PubMed ID: 9196467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An implanted upper-extremity neuroprosthesis using myoelectric control.
    Kilgore KL; Hoyen HA; Bryden AM; Hart RL; Keith MW; Peckham PH
    J Hand Surg Am; 2008 Apr; 33(4):539-50. PubMed ID: 18406958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic control of stimulated pronosupination with the stimulated grasp of persons with tetraplegia.
    Scott TR; Atmore L; Heasman JM; Flynn RY; Vare VA; Gschwind C
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):258-64. PubMed ID: 11561661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The functional impact of the Freehand System on tetraplegic hand function. Clinical Results.
    Taylor P; Esnouf J; Hobby J
    Spinal Cord; 2002 Nov; 40(11):560-6. PubMed ID: 12411963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of key grip and release in the C6 tetraplegic patient through functional electrical stimulation.
    Peckham PH; Marsolais EB; Mortimer JT
    J Hand Surg Am; 1980 Sep; 5(5):462-9. PubMed ID: 6968764
    [No Abstract]   [Full Text] [Related]  

  • 16. Functional electrical stimulation in tetraplegic patients to restore hand function.
    Degnan GG; Wind TC; Jones EV; Edlich RF
    J Long Term Eff Med Implants; 2002; 12(3):175-88. PubMed ID: 12545943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Input-output nonlinearities and time delays increase tracking errors in hand grasp neuroprostheses.
    Adamczyk MM; Crago PE
    IEEE Trans Rehabil Eng; 1996 Dec; 4(4):271-9. PubMed ID: 8973953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative evaluation of two methods of control of bilateral stimulated hand grasps in persons with tetraplegia.
    Scott TR; Heasman JM; Vare VA; Flynn RY; Gschwind CR; Middleton JW; Rutkowski SB
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):259-67. PubMed ID: 10896198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of long-term implanted nerve cuff electrodes on the electrophysiological properties of human sensory nerves.
    Slot PJ; Selmar P; Rasmussen A; Sinkjaer T
    Artif Organs; 1997 Mar; 21(3):207-9. PubMed ID: 9148706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprosthetics of the upper extremity--clinical application in spinal cord injury and future perspectives.
    Rupp R; Gerner HJ
    Biomed Tech (Berl); 2004 Apr; 49(4):93-8. PubMed ID: 15171589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.