BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 9148769)

  • 1. Antibody selection against CD52 produces a paroxysmal nocturnal haemoglobinuria phenotype in human lymphocytes by a novel mechanism.
    Taylor VC; Sims M; Brett S; Field MC
    Biochem J; 1997 Mar; 322 ( Pt 3)(Pt 3):919-25. PubMed ID: 9148769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of CD52-, glycosylphosphatidylinositol-anchor-deficient lymphocytes in rheumatoid arthritis patients following Campath-1H treatment.
    Brett SJ; Baxter G; Cooper H; Rowan W; Regan T; Tite J; Rapson N
    Int Immunol; 1996 Mar; 8(3):325-34. PubMed ID: 8671618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The PNH phenotype cells that emerge in most patients after CAMPATH-1H therapy are present prior to treatment.
    Rawstron AC; Rollinson SJ; Richards S; Short MA; English A; Morgan GJ; Hale G; Hillmen P
    Br J Haematol; 1999 Oct; 107(1):148-53. PubMed ID: 10520035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells.
    Rowan W; Tite J; Topley P; Brett SJ
    Immunology; 1998 Nov; 95(3):427-36. PubMed ID: 9824507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of CD52-, phosphatidylinositolglycan-anchor-deficient T lymphocytes after in vivo application of Campath-1H for refractory B-cell non-Hodgkin lymphoma.
    Hertenstein B; Wagner B; Bunjes D; Duncker C; Raghavachar A; Arnold R; Heimpel H; Schrezenmeier H
    Blood; 1995 Aug; 86(4):1487-92. PubMed ID: 7632956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of CD52 allelic gene products by CAMPATH-1H antibodies.
    Hale C; Bartholomew M; Taylor V; Stables J; Topley P; Tite J
    Immunology; 1996 Jun; 88(2):183-90. PubMed ID: 8690449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clonal CD8+ and CD52- T cells are induced in responding B cell lymphoma patients treated with Campath-1H (anti-CD52).
    Osterborg A; Werner A; Halapi E; Lundin J; Harmenberg U; Wigzell H; Mellstedt H
    Eur J Haematol; 1997 Jan; 58(1):5-13. PubMed ID: 9020367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CD45 tyrosine phosphatase regulates Campath-1H (CD52)-induced TCR-dependent signal transduction in human T cells.
    Hederer RA; Guntermann C; Miller N; Nagy P; Szollosi J; Damjanovich S; Hale G; Alexander DR
    Int Immunol; 2000 Apr; 12(4):505-16. PubMed ID: 10744652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological and molecular characterization of PNH-like lymphocytes emerging after Campath-1H therapy.
    Fracchiolla NS; Barcellini W; Bianchi P; Motta M; Fermo E; Cortelezzi A
    Br J Haematol; 2001 Mar; 112(4):969-71. PubMed ID: 11298593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T cells from paroxysmal nocturnal haemoglobinuria (PNH) patients show an altered CD40-dependent pathway.
    Terrazzano G; Sica M; Becchimanzi C; Costantini S; Rotoli B; Zappacosta S; Alfinito F; Ruggiero G
    J Leukoc Biol; 2005 Jul; 78(1):27-36. PubMed ID: 15817705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H.
    Ginaldi L; De Martinis M; Matutes E; Farahat N; Morilla R; Dyer MJ; Catovsky D
    Leuk Res; 1998 Feb; 22(2):185-91. PubMed ID: 9593475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early emergence of PNH-like T cells after allogeneic stem cell transplants utilising CAMPATH-1H for T cell depletion.
    Garland RJ; Groves SJ; Diamanti P; West SE; Winship KL; Virgo PF; Robinson SP; Oakhill A; Cornish JM; Pamphilon DH; Marks DI; Goulden NJ; Steward CG
    Bone Marrow Transplant; 2005 Aug; 36(3):237-44. PubMed ID: 15968291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-linking of the CAMPATH-1 antigen (CD52) triggers activation of normal human T lymphocytes.
    Rowan WC; Hale G; Tite JP; Brett SJ
    Int Immunol; 1995 Jan; 7(1):69-77. PubMed ID: 7718516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact on T-cell depletion and CD34+ cell recovery using humanised CD52 monoclonal antibody (CAMPATH-1H) in BM and PSBC collections; comparison with CAMPATH-1M and CAMPATH-1G.
    Williams RJ; Clarke E; Blair A; Evely R; Hale G; Waldmann H; Brookes S; Pamphilon DH
    Cytotherapy; 2000; 2(1):5-14. PubMed ID: 12042050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sialoglycoprotein, gp20, of the human capacitated sperm surface is a homologue of the leukocyte CD52 antigen: analysis of the effect of anti-CD52 monoclonal antibody (CAMPATH-1) on capacitated spermatozoa.
    Focarelli R; Francavilla S; Francavilla F; Della Giovampaola C; Santucci A; Rosati F
    Mol Hum Reprod; 1999 Jan; 5(1):46-51. PubMed ID: 10050661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in PIGA cause a CD52-/GPI-anchor-deficient phenotype complicating alemtuzumab treatment in T-cell prolymphocytic leukemia.
    Johansson P; Klein-Hitpass L; Röth A; Möllmann M; Reinhardt HC; Dührsen U; Dürig J
    Eur J Haematol; 2020 Dec; 105(6):786-796. PubMed ID: 32875608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H).
    Rodig SJ; Abramson JS; Pinkus GS; Treon SP; Dorfman DM; Dong HY; Shipp MA; Kutok JL
    Clin Cancer Res; 2006 Dec; 12(23):7174-9. PubMed ID: 17145843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic potential of CAMPATH-1H in skeletal tumours.
    Fritsche-Guenther R; Gruetzkau A; Noske A; Melcher I; Schaser KD; Schlag PM; Kasper HU; Krenn V; Sers C
    Histopathology; 2010 Dec; 57(6):851-61. PubMed ID: 21166699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic transformation of CD52(pos) to CD52(neg) leukemic T cells as a mechanism for resistance to CAMPATH-1H.
    Birhiray RE; Shaw G; Guldan S; Rudolf D; Delmastro D; Santabarbara P; Brettman L
    Leukemia; 2002 May; 16(5):861-4. PubMed ID: 11986948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab.
    Buggins AG; Mufti GJ; Salisbury J; Codd J; Westwood N; Arno M; Fishlock K; Pagliuca A; Devereux S
    Blood; 2002 Sep; 100(5):1715-20. PubMed ID: 12176892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.