BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9149105)

  • 1. Differential distribution of synapsin IIa and IIb mRNAs in various brain structures and the effect of chronic morphine administration on the regional expression of these isoforms.
    Matus-Leibovitch N; Nevo I; Vogel Z
    Brain Res Mol Brain Res; 1997 May; 45(2):301-16. PubMed ID: 9149105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased expression of synapsin I mRNA in defined areas of the rat central nervous system following chronic morphine treatment.
    Matus-Leibovitch N; Ezra-Macabee V; Saya D; Attali B; Avidor-Reiss T; Barg J; Vogel Z
    Brain Res Mol Brain Res; 1995 Dec; 34(2):221-30. PubMed ID: 8750825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the expression of synapsin I and II messenger RNA during postnatal rat brain development.
    Zurmöhle U; Herms J; Schlingensiepen R; Brysch W; Schlingensiepen KH
    Exp Brain Res; 1996 Mar; 108(3):441-9. PubMed ID: 8801124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upregulation of synapsin IIa and IIb mRNAs in the paraventricular and supraoptic nuclei in chronic salt loaded and lactating rats.
    Nomura M; Ueta Y; Serino R; Yamamoto Y; Shibuya I; Yamashita H
    Neurosci Res; 2000 Jul; 37(3):201-10. PubMed ID: 10940454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synapsin I gene expression in the adult rat brain with comparative analysis of mRNA and protein in the hippocampus.
    Melloni RH; Hemmendinger LM; Hamos JE; DeGennaro LJ
    J Comp Neurol; 1993 Jan; 327(4):507-20. PubMed ID: 8440778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic morphine administration enhances the expression of Kv1.5 and Kv1.6 voltage-gated K+ channels in rat spinal cord.
    Matus-Leibovitch N; Vogel Z; Ezra-Macabee V; Etkin S; Nevo I; Attali B
    Brain Res Mol Brain Res; 1996 Sep; 40(2):261-70. PubMed ID: 8872310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Expression of Synapsin I and II upon Treatment by Lithium and Valproic Acid in Various Brain Regions.
    Joshi H; Sharma R; Prashar S; Ho J; Thomson S; Mishra R
    Int J Neuropsychopharmacol; 2018 Jun; 21(6):616-622. PubMed ID: 29618019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of synapsin I and synapsin II in intraocular hippocampal transplants.
    Bergman H; Browning M; Granholm AC
    Hippocampus; 1992 Oct; 2(4):339-47. PubMed ID: 1308193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A third member of the synapsin gene family.
    Kao HT; Porton B; Czernik AJ; Feng J; Yiu G; Häring M; Benfenati F; Greengard P
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4667-72. PubMed ID: 9539796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of synapsin I messenger RNA expression during rat brain development.
    Zurmöhle UM; Herms J; Schlingensiepen R; Schlingensiepen KH; Brysch W
    Exp Brain Res; 1994; 99(1):17-24. PubMed ID: 7925791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal onset of synapsin I gene expression coincides with neuronal differentiation during the development of the nervous system.
    Melloni RH; DeGennaro LJ
    J Comp Neurol; 1994 Apr; 342(3):449-62. PubMed ID: 8021345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of synapsin I gene expression during the establishment and restoration of functional synapses in the rat hippocampus.
    Melloni RH; Apostolides PJ; Hamos JE; DeGennaro LJ
    Neuroscience; 1994 Feb; 58(4):683-703. PubMed ID: 7514766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of transcripts from the synapsin III gene locus.
    Porton B; Kao HT; Greengard P
    J Neurochem; 1999 Dec; 73(6):2266-71. PubMed ID: 10582583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of preproenkephalin mRNA levels in brain regions and spinal cord of rats treated chronically with morphine.
    Gudehithlu KP; Bhargava HN
    Peptides; 1995; 16(3):415-9. PubMed ID: 7651893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of morphine tolerance and abstinence on the binding of [3H]naltrexone to discrete brain regions and spinal cord of the rat.
    Reddy PL; Veeranna ; Matwyshyn GA; Thorat SN; Bhargava HN
    Gen Pharmacol; 1994 Mar; 25(2):355-61. PubMed ID: 8026736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function.
    Terwilliger RZ; Beitner-Johnson D; Sevarino KA; Crain SM; Nestler EJ
    Brain Res; 1991 May; 548(1-2):100-10. PubMed ID: 1651140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synapsin Isoforms Regulating GABA Release from Hippocampal Interneurons.
    Song SH; Augustine GJ
    J Neurosci; 2016 Jun; 36(25):6742-57. PubMed ID: 27335405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphine down-regulates melanocortin-4 receptor expression in brain regions that mediate opiate addiction.
    Alvaro JD; Tatro JB; Quillan JM; Fogliano M; Eisenhard M; Lerner MR; Nestler EJ; Duman RS
    Mol Pharmacol; 1996 Sep; 50(3):583-91. PubMed ID: 8794897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opiate receptor agonists regulate phosphorylation of synapsin I in cocultures of rat spinal cord and dorsal root ganglion.
    Nah SY; Saya D; Barg J; Vogel Z
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4052-6. PubMed ID: 8097883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perinatal morphine. I: Effects on synapsin and neurotransmitter systems in the brain.
    Di Giulio AM; Tenconi B; Malosio ML; Vergani L; Bertelli A; Gorio A
    J Neurosci Res; 1995 Nov; 42(4):479-85. PubMed ID: 8568934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.